Occurrence characteristics of shale oil in the second submember of Da'anzhai Member of Jurassic Ziliujing Formation, central Sichuan Basin
-
摘要: 我国湖相页岩油资源丰富,但开采过程具有一定难度。揭示页岩油不同赋存状态在页岩储层中的赋存情况有助于页岩油资源的勘探与开发。以川中地区侏罗系自流井组大安寨段二亚段(以下简称大二亚段)页岩为研究对象,通过多温阶热解实验的实施、扫描电镜孔隙发育特征的观察以及洗油前后孔径分布的分析,揭示了页岩油不同状态在各介质孔隙中的赋存方式。川中地区大二亚段页岩中热模拟恢复后的页岩油以游离态为主(0.42~10.88 mg/g),吸附态次之(0.30~1.95 mg/g)。页岩发育的储集空间主要为有机质孔(孔径2~600 nm)、黄铁矿粒间孔(孔径10~700 nm)、介壳粒内孔(孔径20~1 000 nm)、石英/长石粒间孔(孔径4~500 nm)以及黏土矿物晶间孔(孔径4~500 nm)。洗油后氮气吸附—高压压汞结果显示,页岩中孔径在2~30 nm以及60~1 000 nm的孔隙明显增多,页岩油主要赋存于此孔径范围的孔隙之中。同时建立了页岩油赋存状态与岩石中各介质间的关系热图,阐明了大二亚段页岩油主要赋存于有机质和黄铁矿之中。最终采用页岩油各赋存状态含量与洗油前后获取的含油体积拟合的方法,指明了研究区不同状态页岩油聚集的孔径范围。大二亚段页岩油游离态主要聚集于孔径60~700 nm的有机质和黄铁矿孔隙之中,吸附态主要聚集于孔径2~6 nm的有机质孔隙之中。对页岩油赋存特征进行深入剖析,有助于川中地区大二亚段页岩油开采突破。Abstract: Although China has abundant lacustrine shale oil resources, their exploitation is challenging. Investigating the various occurrence states of shale oil in shale reservoirs provides value for the exploration and development of shale oil resources. With the shale in the second submember of Da'anzhai Member of Jurassic Ziliujing Formation of the central Sichuan Basin (the Da2 submember) as the research object, the study reveals the occurrence modes of shale oil under different states in various medium pores, through the implementation of the multi-temperature pyrolysis experiment, the observation of pore development characteristics under the scanning electron microscope and the analysis of the pore size distribution before and after oil washing. In the Da2 submember, the shale oil is mainly in the free state (0.42 to 10.88 mg/g), followed by the adsorption state (0.30 to 1.95 mg/g), as revealed by thermal simulation recovery. The reservoir space of shale includes organic pores (pore size: 2 to 600 nm), pyrite intergranular pores (pore size: 10 to 700 nm), shell pores (pore size: 20 to 1 000 nm), quartz/feldspar intergranular pores (pore size: 4 to 500 nm) and clay mineral intergranular pores (pore size: 4 to 500 nm). After oil washing, the results of nitrogen adsorption and high pressure mercury injection demonstrated a significant increase in pores with sizes of 2 to 30 nm and 60 to 1 000 nm, where most of shale oil is stored. Meanwhile, it was demonstrated that the shale oil in the Da2 submember mainly occurs in organic matter and pyrite by establishing a heat map of the relationship between the occurrence state of shale oil and the medium in the rock. Lastly, by fitting the content of shale oil in different occurrence states with the oil volume obtained before and after oil washing, the pore size range for shale oil accumulation in the study area was determined. The free state of shale oil in the Da2 submember primarily accumulates in pores of organic matter and pyrite with pore size of 60 to 700 nm, and the adsorbed state of shale oil mainly accumulates in the organic matter pores with pore size of 2 to 6 nm. In conclusion, this study presents a thorough examination of the occurrence characteristics of shale oil in Da2 submember, and it will support shale oil exploitation efforts in the area.
-
Key words:
- shale oil /
- occurrence state /
- occurrence space /
- occurrence mode /
- second submember of Da'anzhai Member /
- Jurassic /
- Sichuan Basin
-
表 1 选取样品基本信息
Table 1. Basic information of selected samples
样品编号 深度/m ω(TOC)/% VRo/% 主要矿物成分/% S1-1/(mg/g) S1-2/(mg/g) S2-1/(mg/g) SBET/(m2/g) 孔隙度/% 长英质 碳酸盐 黏土矿物 黄铁矿 PL10-1 1 983.1 1.60 1.00 49.9 15.1 29.8 5.2 0.01 0.93 0.98 PL10-2 1 993.4 1.07 1.00 22.3 63.3 13.0 1.4 0.00 1.03 0.41 PL10-3 1 997.4 2.25 1.03 49.5 22.6 24.1 3.8 0.06 1.62 1.95 4.21 2.69 PL10-4 2 006.0 2.60 0.96 54.5 4.4 35.9 5.1 0.09 1.76 1.26 11.56 3.95 PL10-5 2 011.8 1.82 1.00 60.3 5.3 32.1 2.3 0.04 1.64 1.87 PL10-6 2 014.3 2.40 1.03 58.1 8.1 26.8 7.0 0.04 0.86 0.78 21.80 3.61 PL10-7 2 015.2 1.14 1.03 60.8 11.2 28.0 0.0 0.02 0.75 0.73 PL10-8 2 019.1 1.41 1.04 40.1 39.9 16.6 3.5 0.01 0.67 0.88 PL10-9 2 020.1 0.45 1.11 45.2 31.0 23.7 0.0 0.02 0.61 0.34 1.80 1.24 PL10-10 2 022.5 0.68 1.06 58.1 7.3 32.6 1.4 0.00 0.25 0.36 3.65 2.76 PL10-11 2 022.7 0.73 1.12 45.7 33.5 18.9 2.0 0.02 0.79 0.61 PL10-12 2 025.8 0.84 1.16 54.8 34.5 9.4 1.4 0.00 0.21 0.30 PL10-13 2 026.2 0.91 1.19 54.5 15.3 28.5 1.2 0.00 0.28 0.31 2.76 1.95 PL10-14 2 028.5 0.66 1.11 59.2 11.2 29.6 0.0 0.00 0.29 0.49 PL10-15 2 029.8 0.60 1.17 55.1 16.2 26.4 2.3 0.00 0.14 0.31 注:表中SBET代表比表面积。 表 2 川中侏罗系自流井组大安寨段页岩热模拟生排油参数[33, 38]
Table 2. Parameters of oil generation and expulsion during shale thermal simulation in Da'anzhai Member of Jurassic Ziliujing Formation, central Sichuan Basin
样品信息 热模拟实验结果 温度/℃ VRo/% 校正VRo/% 总油产率/(mg/g) 排出油产率/(mg/g) 滞留油产率/(mg/g) 排油效率/% 预测滞留油产率/(mg/g) M030-H31, ω(TOC)=1.83%, VRo=0.97%, 据文献[33] 250 1.15 84.47 11.15 73.32 13.20 300 1.49 1.12 157.80 25.59 132.21 16.22 180.12 350 1.63 1.19 200.76 110.24 90.52 54.91 102.61 365 1.74 1.24 178.00 125.20 52.80 70.34 57.17 380 1.84 1.28 88.83 78.71 10.12 88.61 26.73 400 1.86 1.29 78.37 69.94 8.43 89.24 21.83 450 1.97 1.33 31.77 29.41 2.36 92.57 1.56 Xi20, ω(TOC)=2.25%, VRo=1.0%, 据文献[38] 250 198.72 31.80 166.93 16.00 300 290.50 53.07 237.43 18.27 325 293.32 65.95 227.37 22.48 350 292.69 81.53 211.16 27.86 375 1.54 1.15 311.50 96.87 214.64 31.10 144.55 400 1.79 1.26 166.16 110.03 56.12 66.22 39.16 450 1.93 1.32 93.01 83.45 9.56 89.72 6.80 500 2.28 1.46 51.48 48.25 3.23 93.73 0.26 表 3 川中侏罗系自流井组大安寨段二亚段页岩孔隙发育特征
Table 3. Characteristics of shale pores in second submember of Da'anzhai Member of Jurassic Ziliujing Formation, central Sichuan Basin
类型 孔隙识别图片 孔径分布 有机质孔 黄铁矿粒间孔 介壳粒内孔 其他孔 -
[1] 杨跃明, 黄东, 杨光, 等. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向[J]. 天然气勘探与开发, 2019, 42(2): 1-12.YANG Yueming, HUANG Dong, YANG Guang, et al. Geological conditions to form lacustrine facies shale oil and gas of Jurassic Daanzhai Member in Sichuan Basin and exploration directions[J]. Natural Gas Exploration and Development, 2019, 42(2): 1-12. [2] 何文渊, 白雪峰, 蒙启安, 等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报, 2022, 43(7): 885-898.HE Wenyuan, BAI Xuefeng, MENG Qi'an, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898. [3] 蒋奇君, 李勇, 肖正录, 等. 川中地区大安寨段页岩热演化史及油气地质意义[J]. 新疆石油地质, 2024, 45(3): 262-270.JIANG Qijun, LI Yong, XIAO Zhenglu, et al. Thermal evolution history of shale in Da'anzhai Member and its petroleum geological significance in central Sichuan Basin[J]. Xinjiang Petroleum Geology, 2024, 45(3): 262-270. [4] 张本健, 路俊刚, 张芮, 等. 川中大安寨段页岩排烃效率及其勘探启示[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 15-25.ZHANG Benjian, LU Jungang, ZHANG Rui, et al. Hydrocarbon expulsion efficiency of shale in the Da'anzhai Member of central Sichuan Basin and its exploration enlightenment[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 15-25. [5] 孔祥晔, 曾溅辉, 罗群, 等. 川中地区大安寨段陆相页岩岩相对孔隙结构的控制作用[J]. 新疆石油地质, 2023, 44(4): 392-403.KONG Xiangye, ZENG Jianhui, LUO Qun, et al. Controls of continental shale lithofacies on pore structure of Jurassic Da'an Zhai Member in central Sichuan Basin[J]. Xinjiang Petroleum Geology, 2023, 44(4): 392-403. [6] 杨建, 杨斌, 王良, 等. 川中大安寨段页岩油储层基质孔隙压裂液渗吸驱油侵入深度研究[J]. 油气地质与采收率, 2023, 30(5): 84-91.YANG Jian, YANG Bin, WANG Liang, et al. Invasion depths of fracturing fluid imbibition displacement in matrix pores of Da'an Zhai shale oil reservoirs in central Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 84-91. [7] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology and Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842 [8] 钱门辉, 蒋启贵, 黎茂稳, 等. 湖相页岩不同赋存状态的可溶有机质定量表征[J]. 石油实验地质, 2017, 39(2): 278-286. doi: 10.11781/sysydz201702278QIAN Menhui, JIANG Qigui, LI Maowen, et al. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J]. Petroleum Geology and Experiment, 2017, 39(2): 278-286. doi: 10.11781/sysydz201702278 [9] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. [10] 李政, 包友书, 朱日房, 等. 页岩油赋存特征、可动性实验技术及研究方法进展[J]. 油气地质与采收率, 2024, 31(4): 84-95.LI Zheng, BAO Youshu, ZHU Rifang, et al. Progress in experimental techniques and research methods for shale oil occurrence characteristics and mobility[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(4): 84-95. [11] 谭锋奇, 马春苗, 黎宪坤, 等. 储层流体可动性在油田开发中的应用及展望[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 1-20.TAN Fengqi, MA Chunmiao, LI Xiankun, et al. Application and prospect of fluid mobility in oilfield development[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 1-20. [12] 杨勇. 济阳陆相断陷盆地页岩油富集高产规律[J]. 油气地质与采收率, 2023, 30(1): 1-20.YANG Yong. Enrichment and high production regularities of shale oil reservoirs in continental rift basin: a case study of Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 1-20. [13] 文家成, 胡钦红, 杨升宇, 等. 渤海湾盆地沧东凹陷孔二段页岩储层特征及页岩油可动性评价[J]. 特种油气藏, 2023, 30(4): 63-70. doi: 10.3969/j.issn.1006-6535.2023.04.008WEN Jiacheng, HU Qinhong, YANG Shengyu, et al. Shale reservoir characteristics and shale oil mobility in memher 2 of Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 63-70. doi: 10.3969/j.issn.1006-6535.2023.04.008 [14] 宋书伶, 杨二龙, 沙明宇. 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发, 2023, 13(1): 31-38, 51.SONG shuling, YANG Erlong, SHA Mingyu. Influencing factors of occurrence state of shale oil based on molecular simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 31-38, 51. [15] 王森, 冯其红, 查明, 等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(6): 772-778.WANG Sen, FENG Qihong, ZHA Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 772-778. [16] 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802.WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. [17] 宁方兴, 王学军, 郝雪峰, 等. 济阳坳陷不同岩相页岩油赋存机理[J]. 石油学报, 2017, 38(2): 185-195.NING Fangxing, WANG Xuejun, HAO Xuefeng, et al. Occurrence mechanism of shale oil with different lithofacies in Jiyang Depression[J]. Acta Petrolei Sinica, 2017, 38(2): 185-195. [18] XIE Xiaomin, LI Maowen, LITTKE R, et al. Petrographic and geochemical characterization of microfacies in a lacustrine shale oil system in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2016, 165: 49-63. doi: 10.1016/j.coal.2016.07.004 [19] 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535.LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. [20] KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167-177. doi: 10.1016/j.fuel.2018.07.100 [21] YANG Yongfei, LIU Jie, YAO Jun, et al. Adsorption behaviors of shale oil in kerogen slit by molecular simulation[J]. Chemical Engineering Journal, 2020, 387: 124054. doi: 10.1016/j.cej.2020.124054 [22] ZHANG Wei, FENG Qihong, WANG Sen, et al. Oil diffusion in shale nanopores: insight of molecular dynamics simulation[J]. Journal of Molecular Liquids, 2019, 290: 111183. doi: 10.1016/j.molliq.2019.111183 [23] 钱门辉, 黎茂稳, 蒋启贵, 等. 页岩岩心样品烃类散失特征与地质意义[J]. 石油实验地质, 2022, 44(3): 497-504, 514. doi: 10.11781/sysydz202203497QIAN Menhui, LI Maowen, JIANG Qigui, et al. Evaluation of evaporative loss of hydrocarbon in shale samples and its geological implications[J]. Petroleum Geology & Experiment, 2022, 44(3): 497-504, 514. doi: 10.11781/sysydz202203497 [24] JARVIE D M. Shale resource systems for oil and gas: part 2: shale-oil resource systems[M]//BREYER, J A. Shale reservoirs: giant resources for the 21st century. Texas: AAPG Memoir, 2012, 97: 89-119. [25] 宋国奇, 张林晔, 卢双舫, 等. 页岩油资源评价技术方法及其应用[J]. 地学前缘, 2013, 20(4): 221-228.SONG Guoqi, ZHANG Linye, LU Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228. [26] LI Maowen, CHEN Zuoheng, CAO Tingting, et al. Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001 [27] CHEN Zuoheng, LI Maowen, MA Xiaoxiao, et al. Generation kinetics based method for correcting effects of migrated oil on Rock-Eval data: an example from the Eocene Qianjiang Formation, Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 195: 84-101. doi: 10.1016/j.coal.2018.05.010 [28] ZHANG Hong, HUANG Haiping, LI Zheng, et al. Oil physical status in lacustrine shale reservoirs: a case study on Eocene Shahejie Formation shales, Dongying Depression, East China[J]. Fuel, 2019, 257: 116027. doi: 10.1016/j.fuel.2019.116027 [29] LI Maowen, CHEN Zhuoheng, QIAN Menhui, et al. What are in pyrolysis S1 peak and what are missed?Petroleum compositional characteristics revealed from programed pyrolysis and implications shale oil mobility and resource potential[J]. International Journal of Coal Geology, 2020, 217: 103321. doi: 10.1016/j.coal.2019.103321 [30] 祝海华, 陈琳, 曹正林, 等. 川中地区侏罗系自流井组大安寨段黑色页岩孔隙微观特征及主控因素[J]. 石油与天然气地质, 2022, 43(5): 1115-1126.ZHU Haihua, CHEN Lin, CAO Zhenglin, et al. Microscopic pore characteristics and controlling factors of black shale in the Da'anzhai Member of Jurassic Ziliujing Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(5): 1115-1126. [31] 谯玲. 川中侏罗系大安寨段油气勘探有利区块评价研究[D]. 四川: 西南石油大学, 2013.QIAO Ling. Evaluation of favorable oil and gas exploration blocks in the Jurassic Da'anzhai Member, central Sichuan Basin[D]. Sichuan: Southwest Petroleum University, 2013. [32] 杨跃明, 黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业, 2019, 39(6): 22-33.YANG Yueming, HUANG Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 22-33. [33] 刘子驿. 川中侏罗系大安寨段陆相页岩油赋存状态与可动性评价[D]. 北京: 中国石油大学(北京), 2022.LIU Ziyi. Occurrence state and mobility evaluation of continental shale oil in the Jurassic Da'anzhai Member, central Sichuan Basin[D]. Beijing: China University of Petroleum, Beijing, 2022. [34] YANG Chao, ZHANG Jinchuan, HAN Shuangbiao, et al. Compositional controls on pore-size distribution by nitrogen adsorption technique in the Lower Permian Shanxi shales, Ordos Basin[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1369-1381. doi: 10.1016/j.jngse.2016.08.026 [35] LIU Xuan, ZHANG Jinchuan, LIU Yang, et al. Main factors controlling the wettability of gas shales: a case study of over-mature marine shale in the Longmaxi Formation[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 18-28. doi: 10.1016/j.jngse.2018.05.017 [36] LIU Ziyi, CHEN Dongxia, CHANG Siyuan, et al. Influence of the pore structure on the methane adsorption mechanism in the Upper Triassic lacustrine shales from the western Sichuan Basin, China[J]. Energy & Fuels, 2021, 35(17): 13654-13670. [37] LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. doi: 10.1016/j.marpetgeo.2020.104311 [38] 杨若飞. 四川盆地大安寨段黑色页岩系沉积环境、成烃特征及对早侏罗世大洋缺氧事件的陆相响应研究[D]. 南京: 南京大学, 2019.YANG Ruofei. Sedimentary environment and hydrocarbon generation of the black shales series in the Da'anzhai Member and its terrestrial response to the Early Jurassic Oceanic Anoxic Event in the Sichuan Basin, China[D]. Nanjing: Nanjing University, 2019. [39] 阙永泉, 郑伦举, 承秋泉, 等. 有机质热解模拟实验残留物镜质体反射率校正研究[J]. 石油实验地质, 2015, 37(4): 506-511. doi: 10.11781/sysydz201504506QUE Yongquan, ZHENG Lunju, CHENG Qiuquan, et al. Vitrinite reflectance correction of residues in organic matter pyrolysis simulation experiments[J]. Petroleum Geology and Experiment, 2015, 37(4): 506-511. doi: 10.11781/sysydz201504506 [40] 冯荣昌, 吴因业, 杨光, 等. 川中大安寨段风暴沉积特征及分布模式[J]. 沉积学报, 2015, 33(5): 909-918.FENG Rongchang, WU Yinye, YANG Guang, et al. Storm deposition of the Da'anzhai Member (Jurassic) in central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 909-918. [41] 刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26): 34-41. doi: 10.3969/j.issn.1671-1815.2016.26.005LIU Ziyi, ZHANG Jinchuan, LIU Yang, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41. doi: 10.3969/j.issn.1671-1815.2016.26.005 [42] WANG Min, YANG Jinxiu, WANG Zhiwei, et al. Nanometer-scale pore characteristics of lacustrine shale, Songliao Basin, NE China[J]. Plos One, 2015, 10(8): e0135252. doi: 10.1371/journal.pone.0135252