留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川中侏罗系大安寨二亚段页岩油富集有利岩性组合

刘子驿 陈冬霞 雷文智 朱传真 卢龙飞 朱建辉 张晨雨

刘子驿, 陈冬霞, 雷文智, 朱传真, 卢龙飞, 朱建辉, 张晨雨. 川中侏罗系大安寨二亚段页岩油富集有利岩性组合[J]. 石油实验地质, 2024, 46(6): 1240-1252. doi: 10.11781/sysydz2024061240
引用本文: 刘子驿, 陈冬霞, 雷文智, 朱传真, 卢龙飞, 朱建辉, 张晨雨. 川中侏罗系大安寨二亚段页岩油富集有利岩性组合[J]. 石油实验地质, 2024, 46(6): 1240-1252. doi: 10.11781/sysydz2024061240
LIU Ziyi, CHEN Dongxia, LEI Wenzhi, ZHU Chuanzhen, LU Longfei, ZHU Jianhui, ZHANG Chenyu. Favorable lithologic combinations for shale oil enrichment in the second submember of Da'anzhai Member, Jurassic, central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1240-1252. doi: 10.11781/sysydz2024061240
Citation: LIU Ziyi, CHEN Dongxia, LEI Wenzhi, ZHU Chuanzhen, LU Longfei, ZHU Jianhui, ZHANG Chenyu. Favorable lithologic combinations for shale oil enrichment in the second submember of Da'anzhai Member, Jurassic, central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1240-1252. doi: 10.11781/sysydz2024061240

川中侏罗系大安寨二亚段页岩油富集有利岩性组合

doi: 10.11781/sysydz2024061240
基金项目: 

中国石化重大项目“十四五”资源评价方法与数据库建设 P23229

详细信息
    作者简介:

    刘子驿(1992—), 男, 博士, 工程师, 从事页岩油气地质研究。E-mail: liuzy9223.syky@sinopec.com

    通讯作者:

    陈冬霞(1974—), 女, 博士, 教授, 从事油气成藏研究。E-mail: Lindachen@cup.edu.cn

  • 中图分类号: TE122.1

Favorable lithologic combinations for shale oil enrichment in the second submember of Da'anzhai Member, Jurassic, central Sichuan Basin

  • 摘要: 我国湖相页岩层系地层中岩性组合复杂,且不同岩性组合中的页岩油含量差异较大,明确有利的岩性组合将有助于探寻页岩油富集区。以川中侏罗系大安寨二亚段页岩层系为研究对象,通过矿物组分分析和岩心观察指明了页岩层系中主要发育介壳灰岩、夹介壳层页岩、含介壳页岩和纯页岩,各岩性中发育的孔缝类型多样,其中含介壳页岩和纯页岩中顺层微裂缝更加发育。为了进一步揭示页岩层系中发育的孔缝系统,开展了一维核磁实验来确定岩石中亲油孔缝和亲水孔缝相互间的比例关系(孔缝配置)。其中介壳灰岩和夹介壳层页岩的孔缝配置值>60%,指示油气在其中的运移将受到限制;受顺层微裂缝发育的影响,含介壳页岩和纯页岩的孔缝配置值< 60%,说明其中的孔缝系统能成为较好的油气运移通道。受烃源供给能力和油气运移阻力的影响,在ω(TOC)>1.0%的岩石中,相较于孔缝配置值< 60%,孔缝配置值>60%的岩石具有更多残留油量且可动性较好(S1在0.86~2.19 mg/g范围,均值为1.42 mg/g;OSI值在65.96~123.21 mg/g,均值为91.98 mg/g)。最终结合研究区有机质富集特征,阐明了研究区大安寨二亚段页岩油富集有利岩性组合。

     

  • 图  1  四川盆地区域地质背景图

    a.四川盆地区域构造格局;b.川中地区侏罗系发育的地层;c.川中地区大安寨段连井剖面。

    Figure  1.  Regional geological background of Sichuan Basin

    图  2  川中地区大二亚段页岩层系岩性特征

    a.结晶介壳灰岩,X29井,2 047 m;b.泥质介壳灰岩,PL10井,1 968 m;c.夹介壳层页岩,PL10井,1 994 m;d.夹介壳层页岩与含介壳页岩,PL10井,2 015 m;e.含介壳页岩,G10井,2 706.5 m;f.纯页岩,G10井,2 078 m。

    Figure  2.  Lithologic characteristics of shale strata in Da 2 submember, central Sichuan Basin

    图  3  川中地区大二亚段储层中的孔缝类型

    a.介壳灰岩中粒内孔,PL10井,2 021.1 m;b.介壳灰岩结构缝中充填少量有机质,PL10井,2 021.1 m;c.页岩夹介壳层中粒内孔,G10井,2 720.9 m;d.页岩夹介壳层中结构缝,PL10井,1 997.4 m;e.页岩夹介壳层中有机孔缝,PL10井,1 997.4 m;f.页岩夹介壳层中有机孔和黏土矿物晶间孔,G10井,2 712.5 m;g.页岩含介壳中粒内孔和结构缝,PL10井,2 026.7 m;h.页岩含介壳中顺层微裂缝,PL10井,2 026.7 m;i.页岩含介壳中有机质收缩缝和黏土矿物晶间缝,PL10井,2 014.3 m;j.纯页岩中有机孔和黏土矿物晶间孔,PL10井,2 006.0 m;k.纯页岩中有机质收缩缝,PL10井,2 006.0 m;l. 纯页岩中顺层微裂缝,PL10井,2 006.0 m。

    Figure  3.  Types of pores and fractures in reservoirs of Da 2 submember, central Sichuan Basin

    图  4  川中地区大二亚段不同岩性的孔隙度和渗透率关系

    Figure  4.  Relationship between porosity and permeability of different lithologies in Da 2 submember, central Sichuan Basin

    图  5  核磁共振T2谱储层指示意义[39]

    据参考文献[42]修改。

    Figure  5.  Significance of nuclear magnetic resonance (NMR) T2 spectra in reservoir analysis

    图  6  川中地区大二亚段不同岩性样品饱和油和饱和水核磁共振T2谱图

    Figure  6.  Nuclear magnetic resonance (NMR) T2 spectra of oil-saturated and water-saturated samples of different lithologies in Da 2 submember, central Sichuan Basin

    图  7  川中地区大二亚段样品孔缝配置模式

    Figure  7.  Pore and fracture configuration modes of samples from Da 2 submember, central Sichuan Basin

    图  8  川中地区大二亚段不同岩性含油特征

    a.岩石中S1ω(TOC)之间的关系;b.不同岩性中S1的差异;c.岩石中OSIω(TOC)之间的关系;d.不同岩性中OSI的差异。

    Figure  8.  Oil-bearing characteristics of different lithologies in Da 2 submember, central Sichuan Basin

    图  9  川中地区侏罗系大二亚段页岩油富集的有利岩性组合

    Figure  9.  Favorable lithologic combinations for shale oil enrichment in Da 2 submember, Jurassic, central Sichuan Basin

    表  1  川中地区大二亚段孔缝配置分析的样品基本信息

    Table  1.   Basic information of samples for pore and fracture configuration analysis in Da 2 submember, central Sichuan Basin

    样品编号 井位 深度/m 岩性 主要矿物成分/% ω(TOC)/ % 孔隙度/ % 渗透率/ 10-3 μm2
    石英+长石 碳酸盐矿物 黏土矿物
    G10-8 G10井 2 704.7 介壳灰岩 8.4 81.3 9.1 0.64 2.77 0.071 4
    PL10-15 PL10井 2 020.1 夹介壳层页岩 45.2 31.0 23.7 0.45 1.24 0.002 8
    PL10-35 PL10井 1 997.4 夹介壳层页岩 49.5 22.6 24.1 2.25 2.69 0.087 1
    PL10-10 PL10井 2 026.7 含介壳页岩 55.5 15.8 27.5 0.86 3.98 0.242 8
    PL10-22 PL10井 2 014.3 含介壳页岩 58.1 8.1 26.8 2.40 3.61 0.089 2
    PL10-28 PL10井 2 006.0 纯页岩 54.5 4.4 35.9 2.60 3.95 0.126 8
    下载: 导出CSV

    表  2  川中地区大二亚段发育的岩性特征

    Table  2.   Lithologic characteristics developed in Da 2 submember, central Sichuan asin

    岩性名称 岩性照片 薄片照片 介壳特征 矿物含量分布 TOC含量/%
    介壳灰岩 介壳大量发育,破碎较为严重且介壳排列杂乱 0.03~2.03(N=22)平均: 0.46
    夹介壳层页岩 介壳成层出现 0.18~3.11(N=49)平均: 0.99
    含介壳页岩 介壳量少,见漂浮介壳 0.22~2.90(N=33)平均: 1.12
    纯页岩 无介壳 0.14~2.33(N=23)平均: 1.22
    下载: 导出CSV

    表  3  川中地区大二亚段样品孔缝配置参数

    Table  3.   Pore and fracture configuration parameters of samples from Da 2 submember, central Sichuan Basin

    样品编号 Φof/% Φop/% Φwf/% Φwp/% Φof/Φop Φwf/Φwp λ/% 配置关系
    G10-8 0.08 0.27 0.15 1.86 0.301 0.078 79.45
    PL10-15 0.06 0.52 0.05 0.92 0.120 0.052 69.61
    PL10-35 0.04 1.45 0.01 2.05 0.027 0.007 79.75
    PL10-10 0.07 0.74 0.51 2.80 0.089 0.182 32.76
    PL10-22 0.11 1.18 0.18 2.88 0.090 0.062 59.15 中等
    PL10-28 0.42 2.03 0.41 2.77 0.205 0.150 57.88 中等
    下载: 导出CSV
  • [1] 杨跃明, 黄东, 杨光, 等. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向[J]. 天然气勘探与开发, 2019, 42(2): 1-12.

    YANG Yueming, HUANG Dong, YANG Guang, et al. Geological conditions to form lacustrine facies shale oil and gas of Jurassic Da'anzhai Member in Sichuan Basin and exploration directions[J]. Natural Gas Exploration and Development, 2019, 42(2): 1-12.
    [2] 何文渊, 白雪峰, 蒙启安, 等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报, 2022, 43(7): 885-898.

    HE Wenyuan, BAI Xuefeng, MENG Qi'an, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898.
    [3] 胡宗全, 王濡岳, 刘忠宝, 等. 四川盆地下侏罗统陆相页岩气源储特征及耦合评价[J]. 地学前缘, 2021, 28(1): 261-272.

    HU Zongquan, WANG Ruyue, LIU Zhongbao, et al. Source-reservoir characteristics and coupling evaluations for the Lower Jurassic lacustrine shale gas reservoir in the Sichuan Basin[J]. Earth Science Frontiers, 2021, 28(1): 261-272.
    [4] 雷文智, 陈冬霞, 张芮, 等. 川中地区下侏罗统自流井组大二亚段陆相页岩层系岩性组合类型及其特征[J]. 地球科学(中国地质大学学报), 2021, 46(10): 3657-3672.

    LEI Wenzhi, CHEN Dongxia, ZHANG Rui, et al. Lithological combination types and characteristics of continental shale strata in the second sub-member of Da'anzhai in central Sichuan[J]. Earth Science (Journal of China University of Geosciences), 2021, 46(10): 3657-3672.
    [5] 宋明水, 刘惠民, 王勇, 等. 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发, 2020, 47(2): 225-235.

    SONG Mingshui, LIU Huimin, WANG Yong, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(2): 225-235.
    [6] 李志明, 金芸芸, 李楚雄, 等. 南襄盆地泌阳凹陷渐新统核桃园组三Ⅲ亚段页岩油富集模式: 以中部深凹带YYY1井取心段为例[J]. 石油实验地质, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952

    LI Zhiming, JIN Yunyun, LI Chuxiong, et al. Discussion on shale oil enrichment pattern in the Ⅲ submember of the third member of Oligocene Hetaoyuan Formation, Biyang Sag, Nanxiang Basin: a case study of cored interval of well YYY1 in the central deep sag zone[J]. Petroleum Geology & Experiment, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952
    [7] 赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372.

    ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372.
    [8] 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349.

    GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349.
    [9] 张本健, 路俊刚, 张芮, 等. 川中大安寨段页岩排烃效率及其勘探启示[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 15-25.

    ZHANG Benjian, LU Jungang, ZHANG Rui, et al. Hydrocarbon expulsion efficiency of shale in the Da'anzhai Member of central Sichuan Basin and its exploration enlightenment[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2024, 46(2): 15-25.
    [10] 周志军, 张国青, 崔春雪, 等. 不同岩性页岩油储集空间及物性特征[J]. 特种油气藏, 2023, 30(5): 42-49.

    ZHOU Zhijun, ZHANG Guoqing, CUI Chunxue, et al. Reservoir space and physical characteristics of shale oil with different lithologies [J]. Special Oil & Gas Reservoin, 2023, 30(5): 42-49.
    [11] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
    [12] 聂海宽, 马鑫, 余川, 等. 川东下侏罗统自流井组页岩储层特征及勘探潜力评价[J]. 石油与天然气地质, 2017, 38(3): 438-447.

    NIE Haikuan, MA Xin, YU Chuan, et al. Shale gas reservoir characteristics and its exploration potential-analysis on the Lower Jurassic shale in the eastern Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(3): 438-447.
    [13] 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535.

    LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535.
    [14] 李志明, 刘雅慧, 何晋译, 等. 陆相页岩油"甜点"段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467.

    LI Zhiming, LIU Yahui, HE Jinyi, et al. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil[J]. Oil & Gas Geology, 2023, 44(6): 1453-1467.
    [15] TIAN Hui, LI Tengfei, ZHANG Tongwei, et al. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications[J]. International Journal of Coal Geology, 2016, 156: 36-49.
    [16] 白莹, 白斌, 徐旺林, 等. 鄂尔多斯盆地南部延长组7段页岩孔隙特征及页岩油赋存方式[J]. 石油学报, 2022, 43(10): 1395-1408.

    BAI Ying, BAI Bin, XU Wanglin, et al. Pore characteristics of shale and occurrence mode of shale oil in member 7 of Yanchang Formation in southern Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(10): 1395-1408.
    [17] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
    [18] SONG Liaosha, CARR T R. The pore structural evolution of the Marcellus and Mahantango shales, Appalachian Basin[J]. Marine and Petroleum Geology, 2020, 114: 104226.
    [19] 胡涛, 姜福杰, 庞雄奇, 等. 页岩油微运移识别、评价及其石油地质意义[J]. 石油勘探与开发, 2024, 51(1): 114-126.

    HU Tao, JIANG Fujie, PANG Xiongqi, et al. Identification and evaluation of shale oil micro-migration and its petroleum geological significance[J]. Petroleum Exploration and Development, 2024, 51(1): 114-126.
    [20] LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311.
    [21] 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452.

    WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452.
    [22] ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. 1D and 2D Nuclear Magnetic Resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks[J]. Marine and Petroleum Geology, 2020, 114: 104210.
    [23] MUKHAMETDINOVA A, HABINA-SKRZYNIARZ I, KAZAK DR A, et al. NMR relaxometry interpretation of source rock liquid saturation: a holistic approach[J]. Marine and Petroleum Geology, 2021, 132: 105165.
    [24] 王森, 冯其红, 查明, 等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(6): 772-778.

    WANG Sen, FENG Qihong, ZHA Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 772-778.
    [25] 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802.

    WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802.
    [26] 姜振学, 李廷微, 宫厚健, 等. 沾化凹陷低熟页岩储层特征及其对页岩油可动性的影响[J]. 石油学报, 2020, 41(12): 1587-1600.

    JIANG Zhenxue, LI Tingwei, GONG Houjian, et al. Characteristics of low-mature shale reservoirs in Zhanhua Sag and their influence on the mobility of shale oil[J]. Acta Petrolei Sinica, 2020, 41(12): 1587-1600.
    [27] 柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838.

    LIU Bo, SHI Jiaxin, FU Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838.
    [28] LIU Chang, XU Xingyou, LIU Keyu, et al. Pore-scale oil distribution in shales of the Qingshankou Formation in the Changling Sag, Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2020, 120: 104553.
    [29] 葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6): 1244-1255.

    XI Kelai, LI Ke, CAO Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1244-1255.
    [30] 杨建, 杨斌, 王良, 等. 川中大安寨段页岩油储层基质孔隙压裂液渗吸驱油侵入深度研究[J]. 油气地质与采收率, 2023, 30(5): 84-91.

    YANG Jian, YANG Bin, WANG Liang, et al. Invasion depths of fracturing fluid imbibition displacement in matrix pores of Da'an Zhai shale oil reservoirs in central Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 84-91.
    [31] 张少敏, 杨跃明, 洪海涛, 等. 陆相页岩层段储集特征及其油气地质意义: 以四川盆地中部大安寨段为例[J]. 中国矿业大学学报, 2022, 51(4): 718-730.

    ZHANG Shaomin, YANG Yueming, HONG Haitao, et al. Reservoir characteristics and its petroleum significance of Jurassic Da'an Zhai shale interval in central Sichuan Basin, SW China[J]. Journal of China University of Mining & Technology, 2022, 51(4): 718-730.
    [32] 杨跃明, 黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业, 2019, 39(6): 22-33.

    YANG Yueming, HUANG Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 22-33.
    [33] XU Qilu, LIU Bo, MA Yongsheng, et al. Controlling factors and dynamical formation models of lacustrine organic matter accumulation for the Jurassic Da'anzhai Member in the central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2017, 86: 1391-1405.
    [34] 邹才能, 杨智, 王红岩, 等. "进源找油": 论四川盆地非常规陆相大型页岩油气田[J]. 地质学报, 2019, 93(7): 1551-1562.

    ZOU Caineng, YANG Zhi, WANG Hongyan, et al. "Exploring petroleum inside source kitchen": Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562.
    [35] 冯荣昌, 吴因业, 杨光, 等. 川中大安寨段风暴沉积特征及分布模式[J]. 沉积学报, 2015, 33(5): 909-918.

    FENG Rongchang, WU Yinye, YANG Guang, et al. Storm deposition of the Da'anzhai Member (Jurassic) in central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 909-918.
    [36] 厚刚福, 倪超, 陈薇, 等. 川中地区大安寨段介壳滩沉积特征及控制因素[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 25-34.

    HOU Gangfu, NI Chao, CHEN Wei, et al. Sedimentary characteristics and factors controlling the shell beach in the Da'anzhai Member of the central Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 25-34.
    [37] CARVAJAL-ORTIZ H, GENTZIS T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited[J]. International Journal of Coal Geology, 2015, 152: 113-122.
    [38] LIU Yuchen, CHEN Dongxia, QIU Nansheng, et al. Reservoir characteristics and methane adsorption capacity of the Upper Triassic continental shale in western Sichuan Depression, China[J]. Australian Journal of Earth Sciences, 2017, 64(6): 807-823.
    [39] ZHANG Pengfei, LU Shuangfang, LI Junqian. Characterization of pore size distributions of shale oil reservoirs: a case study from Dongying Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 297-308.
    [40] FU Yonghong, JIANG Yuqiang, DONG Dazhong, et al. Microscopic pore-fracture configuration and gas-filled mechanism of shale reservoirs in the western Chongqing area, Sichuan Basin, China[J]. Petroleum Exploration and Development, 2021, 48(5): 1063-1076.
    [41] 洪海涛, 路俊刚, 秦春雨, 等. 川中侏罗系自流井组大安寨段页岩油储层特征及其勘探启示[J]. 石油实验地质, 2014, 46(1): 11-21. doi: 10.11781/sysydz202401011

    HONG Haitao, LU Jungang, QIN Chunyu, et al. Shale oil reservoir characteristics and exploration implication in Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(1): 11-21. doi: 10.11781/sysydz202401011
    [42] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学: 地球科学, 2010, 40(11): 1598-1607.

    YAO Yanbin, LIU Dameng, CAI Yidong, et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China: Earth Sciences, 2010, 53(6): 854-862.
    [43] MA Xinhua, WANG Hongyan, ZHOU Shangwen, et al. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103674.
    [44] CHEN Shijing, LI Pei, ZHANG Jinchuan, et al. Measurement of shale wettability using calorimetry: experimental results and model[J]. Energy & Fuels, 2021, 35(21): 17446-17462.
    [45] CAO Zhe, JIANG Hang, ZENG Jianhui, et al. Nanoscale liquid hydrocarbon adsorption on clay minerals: a molecular dynamics simulation of shale oils[J]. Chemical Engineering Journal, 2021, 420: 127578.
    [46] LIANG Chao, CAO Yingchang, LIU Keyu, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
    [47] JARVIE D M. Shale resource systems for oil and gas: part 2 shale-oil resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century. Tulsa: AAPG Memoir, 2012: 89-119.
    [48] 郭旭升, 申宝剑, 李志明, 等. 论我国页岩油气的统一性[J]. 石油实验地质, 2024, 46(5): 889-905.

    GUO Xusheng, SHEN Baojian, LI Zhiming, et al. Discussion on the uniformity of shale oil and gas in China[J]. Petroleum Geology & Experiment, 2024, 46(5): 889-905.
    [49] LIU Ziyi, CHEN Dongxia, LEI Wenzhi, et al. Controls of the paleoenvironment on differential organic matter enrichment of lacustrine fine-grained rocks: a case study of the Jurassic Da'anzhai Member, central Sichuan Basin, SW China[J]. Journal of Asian Earth Sciences, 2022, 236: 105319.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  62
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-09-29
  • 刊出日期:  2024-11-28

目录

    /

    返回文章
    返回