Sedimentary characteristics of post-uplift basins in foreland basin system: a case study of Jurassic Sangonghe Formation in hinterland of Junggar Basin
-
摘要: 前陆盆地油气资源丰富,但主要集中在前渊带,随着隆后盆地油气勘探取得突破,该类盆地逐渐成为研究热点。准噶尔盆地腹部属于隆后盆地,该区侏罗系三工河组是重要的油气产层,但是目前对于其沉积相的类型存在较大争议。随着勘探的深入推进和各种地质资料的不断丰富,三工河组的沉积相类型及演化逐渐变得清晰。为明确前陆盆地系统中隆后盆地沉积相类型、分布及与前渊带沉积特征的差异性,在扎实的野外地质剖面、岩心、测井、地震和分析测试资料分析的基础上,详细剖析了三工河组的沉积相类型、展布特征及其控制因素。准噶尔盆地腹部隆后盆地三工河组沉积相类型包括辫状河三角洲相、湖底扇相和湖泊相等。其中,辫状河三角洲相进一步划分为平原和前缘亚相,主要分布在石西和莫北地区;湖底扇相主要分布在盆1井西凹陷中,发育鲍马序列,多见“A”、“B”段,其物源来自研究区东部的辫状河三角洲。三工河组沉积期,研究区存在3个物源,而非前人认为的西北部和东北部2个物源。稳定重矿物等资料分析表明,W36湖底扇受到东北部物源影响,而W46湖底扇受到东南物源影响。前陆盆地前渊带沉积物粒度较粗,沉积相类型简单,且以构造油气藏为主;而隆后盆地沉积物粒度较细,沉积相类型多,且以构造—岩性、岩性油气藏为主。Abstract: Foreland basins are rich in oil and gas resources, with most being concentrated in the foredeep zone. However, as breakthroughs in oil and gas exploration in post-uplift basins have been made, these types of basins gradually become a research hotspot. The hinterland of the Junggar Basin is a post-uplift basin, and the Jurassic Sangonghe Formation is an important oil and gas-bearing layer in this area. However, there is still a significant debate about the types of sedimentary facies in this formation. With the progress of exploration and the continuous enrichment of geological data, the types and evolution of the sedimentary facies in the Sangonghe Formation have gradually become clearer. To clarify the sedimentary facies types, distribution, and the differences from the foredeep zone in the post-uplift basins of the foreland basin system, the study analyzed geological profiles, cores, well logging, seismic data, and analytical test results. It provided a detailed analysis of the sedimentary facies types, distribution characteristics, and controlling factors of the Sangonghe Formation. The sedimentary facies types of the Sangonghe Formation include braided river delta facies, sublacustrine fan facies, and lacustrine facies. The braided river delta facies are further subdivided into the plain and front subfacies, which are mainly distributed in the Shixi and Mobei areas. The sublacustrine fan facies are mainly distributed in the west sag of well 1 in the basin, characterized by Bouma sequences, with "A" and "B" segments being mostly common. The sediment source for these fans came from the braided river delta in the eastern part of the study area. During the sedimentary period of the Sangonghe Formation, there were three sources in the study area, instead of only two sources from the northwest and northeast as previously believed. Stable heavy mineral analysis showed that the W36 sublacustrine fan was affected by the northeastern sediment source, while the W46 sublacustrine fan was affected by the southeastern source. Sediments in the foredeep zone of the foreland basin were coarse, with simple sedimentary facies types and structural oil and gas reservoirs as the primary trap types. However, sediments in the post-uplift basin had finer grain sizes, with more varied sedimentary facies types, and were dominated by tectonic-lithologic and lithologic oil and gas reservoirs.
-
Key words:
- sublacustrine fan /
- post-uplift basin /
- Sangonghe Formation /
- Jurassic /
- Junggar Basin
-
图 4 准噶尔盆地腹部三工河组辫状河三角洲和湖底扇相岩心特征
a.具冲刷面含砾中、细砂岩,W58井,3 192.48 m;b.含棕色泥砾和碳屑细砂岩,W58井,3 032.62 m;c.棕色泥岩,W58井,3 234.51 m;d.滑塌变形构造,W50井,4 045.59 m;e.波状层理,W50井,4 047.18 m;f.砂纹层理与脉状层理,W50井,3 311.32 m;g.鲍马序列“A”段,W35井,4 016.07 m;h.鲍马序列“A-B”段,W46井,4 225.74 m。
Figure 4. Core characteristics of braided river delta and sublacustrine fan facies in Sangonghe Formation, hinterland of Junggar Basin
图 5 准噶尔盆地腹部侏罗系三工河组沉积相南北向对比剖面
剖面位置见图 8。
Figure 5. Comparison of north-south trending sedimentary facies in Jurassic Sangonghe Formation, hinterland of Junggar Basin
图 6 准噶尔盆地腹部侏罗系三工河组沉积相东西向对比剖面
剖面位置见图 8。
Figure 6. Comparison of east-west trending sedimentary facies profiles in Sangonghe Formation, hinterland of Junggar Basin
图 7 准噶尔盆地腹部侏罗系三工河组下段湖底扇透镜状反射构造
剖面位置见图 8。
Figure 7. Lens-shaped reflective structure of sublacustrine fan in lower section of Jurassic Sangonghe Formation, hinterland of Junggar Basin
图 10 准噶尔盆地腹部地震剖面侏罗系三工河组二级坡折带特征
剖面位置见图 8。
Figure 10. Seismic profile showing characteristics of secondary slope-break zone in Jurassic Sangonghe Formation, hinterland of Junggar Basin
表 1 准噶尔盆地腹部侏罗系三工河组沉积相划分方案及特征
Table 1. Classification scheme and characteristics of sedimentary facies in Jurassic Sangonghe Formation, hinterland of Junggar Basin
相 亚相 微相 岩性特征 沉积构造及沉积韵律 电性特征 测井曲线 辫状河三角洲 平原 分流河道 棕色砾质砂岩、含砾砂岩、中一细砂岩 平行层理、板状交错层理,正韵律 GR值低-中,Rt值高,测井相为箱形和钟形 河道间 灰绿色泥岩、粉砂岩、粉砂质泥岩 砂纹层理,水平层理 GR值中-高值,Rt值低,齿化严重 前缘 水下分流河道 灰色细砂岩、粉砂岩 滑塌变形构造、波状层理、脉状层理,正韵律 GR值低-中,Rt值高,测井相为箱形和钟形 河口砂坝 灰色细砂岩、粉砂岩 波状层理、平行层理,逆韵律 GR值低-中,Rt值高,测井相为漏斗形 支流间湾 灰色泥岩 砂纹层理,水平层理 GR值中-高值,Rt值低,齿化严重 湖底扇 扇根-扇中 浊流、分流河道 灰色细砂岩、粉砂岩 鲍马序列,正韵律 GR值中,Rt值中-高,测井相为齿化钟形 湖泊 滨浅湖 灰色粉砂岩、泥质砂岩 砂纹层理,透镜状层理 GR值中-高值,Rt值较低,测井相为指状 半深湖 灰色泥岩夹泥质砂岩 水平层理 GR值高值,Rt值低,测井曲线弱齿化 -
[1] DECELLES P G, GILES K A. Foreland basin systems[J]. Basin Research, 2003, 8(2): 105-123. [2] HUANGFU Pengpeng, LI Zhonghai, ZHANG Kaijun. India-Tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094561. doi: 10.1029/2021GL094561 [3] ZHAO Junmeng, LIU Guodong, LU Zaoxun, et al. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar Basin[J]. Tectonophysics, 2003, 376(3/4): 199-239. [4] 刘和甫, 汪泽成, 熊保贤, 等. 中国中西部中、新生代前陆盆地与挤压造山带耦合分析[J]. 地学前缘, 2000, 7(3): 55-72. doi: 10.3321/j.issn:1005-2321.2000.03.006LIU Hefu, WANG Zecheng, XIONG Baoxian, et al. Coupling analysis of Mesozoic-Cenozoic foreland basin and mountain system in central and western China[J]. Earth Science Frontiers, 2000, 7(3): 55-72. doi: 10.3321/j.issn:1005-2321.2000.03.006 [5] 邓起东, 冯先岳, 张培震, 等. 乌鲁木齐山前坳陷逆断裂—褶皱带及其形成机制[J]. 地学前缘, 1999, 6(4): 191-201. doi: 10.3321/j.issn:1005-2321.1999.04.001DENG Qidong, FENG Xianyue, ZHANG Peizhen, et al. Reverse fault and fold zone in the Urumqi range-front depression of the northern Tianshan and its genetic mechanism[J]. Earth Science Frontiers, 1999, 6(4): 191-201. doi: 10.3321/j.issn:1005-2321.1999.04.001 [6] 赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872 [7] 冯怀伟, 许淑梅, 王金铎, 等. 浅水三角洲物源、砂体构型与储层特征研究: 以准噶尔盆地永进—莫西庄地区侏罗系三工河组二段为例[J]. 地质论评, 2024, 70(03): 330-345.FENG Huaiwei, XU Shumei, WANG Jinduo, et al. Study on shallow water delta provenance, sandbody architecture and reservoir characteristics: a case of the 2nd member of the Jurassic Sangonghe Formation in Yongin-Moxizhuang region Junggar Basin[J]. Geological Review, 2024, 70(03): 330-345. [8] 付爽, 纪宝强, 李俊飞, 等. 准噶尔盆地石南地区中侏罗—下白垩统储层成岩作用研究[J]. 西北地质, 2018, 51(4): 244-254. doi: 10.3969/j.issn.1009-6248.2018.04.022FU Shuang, JI Baoqiang, LI Junfei, et al. Diagenesis of Middle Jurassic-Lower Cretaceous reservoirs in Shinan area, Junggar Basin[J]. Northwestern Geology, 2018, 51(4): 244-254. doi: 10.3969/j.issn.1009-6248.2018.04.022 [9] 李彦举, 张婷, 许泰, 等. 深部优质储层成因机理: 以准噶尔盆地阜东斜坡区侏罗系三工河组碎屑岩储层为例[J]. 西北地质, 2019, 52(3): 151-161.LI Yanju, ZHANG Ting, XU Tai, et al. Formation mechanism of deeply buried high-quality reservoir: example from clastic reservoir of Sangonghe Formation in Fudong Slope Zone, Junggar Basin[J]. Northwestern Geology, 2019, 52(3): 151-161. [10] 王斌, 邱岐, 陆永潮, 等. 准噶尔盆地腹部上二叠统—下三叠统浅水辫状河三角洲沉积特征与模式[J]. 石油实验地质, 2023, 45(4): 606-619.WANG Bin, QIU Qi, LU Yongchao, et al. Sedimentary characteristics and sedimentary model of the Upper Permian-Lower Triassic shallow braided river delta in the hinterland of the Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 606-619. [11] 孙靖, 薛晶晶, 厚刚福, 等. 莫北区块三工河组浅水三角洲储层特征及勘探前景[J]. 特种油气藏, 2020, 27(3): 34-39.SUN Jing, XUE Jingjing, HOU Gangfu, et al. Shallow-water delta reservoir characterization and exploration prospect in the Sangonghe Formation of Mobei block[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 34-39. [12] 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861.HE Dengfa, ZHANG Lei, WU Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861. [13] 鲍志东, 刘凌, 张冬玲, 等. 准噶尔盆地侏罗系沉积体系纲要[J]. 沉积学报, 2005, 23(2): 194-202. doi: 10.3969/j.issn.1000-0550.2005.02.002BAO Zhidong, LIU Ling, ZHANG Dongling, et al. Depositional system frameworks of the Jurassic in Junggar Basin[J]. Acta Sedimentologica Sinica, 2005, 23(2): 194-202. doi: 10.3969/j.issn.1000-0550.2005.02.002 [14] 孙靖, 薛晶晶, 厚刚福, 等. 湖盆凹陷区砂质碎屑流沉积特征与模式: 以准噶尔盆地盆1井西凹陷侏罗系三工河组为例[J]. 中国矿业大学学报, 2019, 48(4): 858-869.SUN Jing, XUE Jingjing, HOU Gangfu, et al. Sedimentary characteristics and model of sandy debris flow in depression area of lacustrine basin: a case study of the Jurassic Sangonghe Formation in the western well Pen-1 Sag, Junggar Basin[J]. Journal of China University of Mining & Technology, 2019, 48(4): 858-869. [15] 费李莹, 王仕莉, 吴涛, 等. 坡折带对砂质碎屑流沉积的控制作用: 以准噶尔盆地盆1井西凹陷及周缘侏罗系三工河组为例[J]. 油气地质与采收率, 2020, 27(2): 26-34.FEI Liying, WANG Shili, WU Tao, et al. Control of slope break zone on sandy debris flow deposition: a case study of Jurassic Sangonghe Formation in west sag of well Pen-1 and its periphery in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 26-34. [16] 胡才志, 张立宽, 罗晓容, 等. 准噶尔盆地腹部莫西庄地区三工河组低孔渗砂岩储层成岩与孔隙演化研究[J]. 天然气地球科学, 2015, 26(12): 2254-2266.HU Caizhi, ZHANG Likuan, LUO Xiaorong, et al. Diagenesis and porosity evolution of the low-porosity and low-permeability sandstones: evidence from the Lower Jurassic Sangonghe Formation in Moxizhuang area, central Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(12): 2254-2266. [17] 金振奎, 苏奎, 苏妮娜. 准噶尔盆地腹部侏罗系深部优质储层成因[J]. 石油学报, 2011, 32(1): 25-31.JIN Zhenkui, SU Kui, SU Nina. Origin of Jurassic deep burial high-quality reservoirs in the central Junggar Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 25-31. [18] 李双文, 刘洛夫, 张有平, 等. 准噶尔盆地莫北凸起侏罗系三工河组沉积演化及微相构成[J]. 沉积学报, 2006, 24(6): 819-828.LI Shuangwen, LIU Luofu, ZHANG Youping, et al. Sedimentary evolution and microfacies architecture of the Jurassic Sangonghe Formation in Mobei Arch, Junggar Basin[J]. Acta Sedimentologica Sinica, 2006, 24(6): 819-828. [19] 李思田, 解习农, 王华, 等. 沉积盆地分析基础与应用[M]. 北京: 高等教育出版社, 2004: 15-18.LI Sitian, XIE Xinong, WANG Hua, et al. Sedimentary basin analysis: principle and application[M]. Beijing: Higher Education Press, 2004: 15-18. [20] 林畅松, 潘元林, 肖建新, 等. "构造坡折带": 断陷盆地层序分析和油气预测的重要概念[J]. 地球科学(中国地质大学学报), 2000, 25(3): 260-266.LIN Changsong, PAN Yuanlin, XIAO Jianxin, et al. Structural slope-break zone: key concept for stratigraphic sequence analysis and petroleum forecasting in fault subsidence basins[J]. Earth Science(Journal of China University of Geosciences), 2000, 25(3): 260-266. [21] 林会喜, 王建伟, 曹建军, 等. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究[J]. 地质学报, 2019, 93(12): 3259-3268.LIN Huixi, WANG Jianwei, CAO Jianjun, et al. Jurassic compression torsion fault patterns of the central Junggar Basin and their controlling role on reservoir[J]. Acta Geologica Sinica, 2019, 93(12): 3259-3268. [22] 刘刚, 卫延召, 罗鸿成, 等. 准噶尔盆地陆西地区石南13井区侏罗系三工河组砂体结构及控藏作用[J]. 石油学报, 2018, 39(9): 1006-1018.LIU Gang, WEI Yanzhao, LUO Hongcheng, et al. Sand-body structure and reservoir forming control of Jurassic Sangonghe Formation in well block Shinan 13, Luxi area, Junggar Basin[J]. Acta Petrolei Sinica, 2018, 39(9): 1006-1018. [23] 刘辉, 胡修权, 梁家驹, 等. 准噶尔盆地准中4区块侏罗系断裂特征及对油气成藏的控制作用[J]. 地质论评, 2018, 64(6): 1489-1504.LIU Hui, HU Xiuquan, LIANG Jiaju, et al. Characteristics of Jurassic fault and its control effect on hydrocarbon accumulation in the block 4 in the middle of the Junggar Basin[J]. Geological Review, 2018, 64(6): 1489-1504. [24] 双棋, 张昌民, 赵康, 等. 准噶尔盆地南缘托斯台沟剖面三工河组河道砂体建筑结构[J]. 新疆石油地质, 2019, 40(3): 298-306.SHUANG Qi, ZHANG Changmin, ZHAO Kang, et al. Architectural element analysis of channel sand body in Sangonghe Formation on Tuositai gully section in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(3): 298-306. [25] 王彤, 朱筱敏, 董艳蕾, 等. 基于微量元素分析的古沉积背景重建: 以准噶尔盆地西北缘古近系安集海河组为例[J]. 地质学报, 2020, 94(12): 3830-3851.WANG Tong, ZHU Xiaomin, DONG Yanlei, et al. Trace elements as paleo sedimentary environment indicators: a case study of the Paleogene Anjihaihe Formation in the northwestern Junggar Basin[J]. Acta Geologica Sinica, 2020, 94(12): 3830-3851. [26] 陈发景, 汪新文, 汪新伟. 准噶尔盆地的原型和构造演化[J]. 地学前缘, 2005, 12(3): 77-89.CHEN Fajing, WANG Xinwen, WANG Xinwei. Prototype and tectonic evolution of the Junggar Basin, northwestern China[J]. Earth Science Frontiers, 2005, 12(3): 77-89. [27] 赵文智, 靳久强, 薛良清. 中国西北地区侏罗纪原型盆地形成与演化[M]. 北京: 地质出版社, 2000: 1-36.ZHAO Wenzhi, JIN Jiuqiang, XUE Liangqing. Formation and evolution of Jurassic prototype basin in Northwest China[M]. Beijing: Geological Publishing House, 2000: 1-36. [28] 朱筱敏, 张义娜, 杨俊生, 等. 准噶尔盆地侏罗系辫状河三角洲沉积特征[J]. 石油与天然气地质, 2008, 29(2): 244-251.ZHU Xiaomin, ZHANG Yina, YANG Junsheng, et al. Sedimentary characteristics of the shallow Jurassic braided river delta, the Junggar Basin[J]. Oil & Gas Geology, 2008, 29(2): 244-251.