留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

琼东南盆地基底花岗岩风化—构造联合控储机制

王军强 陈安清 胡林 侯明才 尤丽 何小胡 曹海洋 阙有缘 熊富浩 王文博

王军强, 陈安清, 胡林, 侯明才, 尤丽, 何小胡, 曹海洋, 阙有缘, 熊富浩, 王文博. 琼东南盆地基底花岗岩风化—构造联合控储机制[J]. 石油实验地质, 2024, 46(6): 1265-1274. doi: 10.11781/sysydz2024061265
引用本文: 王军强, 陈安清, 胡林, 侯明才, 尤丽, 何小胡, 曹海洋, 阙有缘, 熊富浩, 王文博. 琼东南盆地基底花岗岩风化—构造联合控储机制[J]. 石油实验地质, 2024, 46(6): 1265-1274. doi: 10.11781/sysydz2024061265
WANG Junqiang, CHEN Anqing, HU Lin, HOU Mingcai, YOU Li, HE Xiaohu, CAO Haiyang, QUE Youyuan, XIONG Fuhao, WANG Wenbo. Combined control mechanism of weathering and tectonics for basement granite of Qiongdongnan Basin, South China Sea[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1265-1274. doi: 10.11781/sysydz2024061265
Citation: WANG Junqiang, CHEN Anqing, HU Lin, HOU Mingcai, YOU Li, HE Xiaohu, CAO Haiyang, QUE Youyuan, XIONG Fuhao, WANG Wenbo. Combined control mechanism of weathering and tectonics for basement granite of Qiongdongnan Basin, South China Sea[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1265-1274. doi: 10.11781/sysydz2024061265

琼东南盆地基底花岗岩风化—构造联合控储机制

doi: 10.11781/sysydz2024061265
基金项目: 

四川省科技计划创新群体项目 2023NSFSC1986

详细信息
    作者简介:

    王军强(1999—), 男, 硕士, 从事油气储层研究。E-mail: 2500401685@qq.com

    通讯作者:

    陈安清(1981—), 男, 博士, 教授, 从事沉积学、石油地质学方面的教学与研究工作。E-mail: aqinth@163.com

  • 中图分类号: TE122.2

Combined control mechanism of weathering and tectonics for basement granite of Qiongdongnan Basin, South China Sea

  • 摘要: 含油气盆地的潜山基岩油气藏是一个特殊的勘探领域。近年来,在南海琼东南盆地的中生界花岗岩潜山中获得多个油气勘探发现,昭示着该领域良好的勘探前景。盆地中部的松南潜山群资料最为丰富,多口探井钻遇基底花岗岩储层。裂缝作用作为致密结晶基岩成储的先决改造条件,在基岩潜山储层研究中至关重要,但是对该区域花岗岩潜山的裂缝发育特征以及构造应力缺乏研究,严重制约了基岩潜山油气藏的勘探进展。基于松南低凸起5口钻井的岩心和壁心观察、显微薄片鉴定、测井和地震资料解释,揭示了松南低凸起潜山的多期裂缝的切割关系、开度、形态和走向等发育特征,并探讨了形成两组构造缝的构造应力。研究结果表明,构造缝和沿裂缝的溶蚀孔洞是基岩花岗岩的主要储集空间;构造缝分为北东向和北西向两组,印支期古特提斯洋关闭形成的北东向挤压是北西向断裂以及北东向构造缝的构造动力,燕山期来自东南侧的西太平洋俯冲相关的构造挤压则促成了北东向断裂以及北西向构造缝的发育;花岗岩中高密度裂缝的发育为暴露期大气水下渗溶蚀提供了网状通道,并形成了由砂砾岩带、风化裂缝带、内幕裂缝带组成的风化壳储层三层结构;新生代早期裂谷盆地形成过程中的伸展拆离背景对先存网状裂缝体系具有活化作用,是裂缝松弛开启从而提高储集空间的重要因素。

     

  • 图  1  琼东南盆地构造纲要及地层综合柱状图

    Figure  1.  Structure outline map and stratigraphic composite column of Qiongdongnan Basin

    图  2  琼东南盆地潜山基岩裂缝特征

    a.两组平直的构造缝,中三叠统黑云母二长花岗岩,三亚东海角剖面野外照片;b.壁心样品上的裂缝形态,两组平直的构造缝,二长花岗岩,Y81-c井,3 006 m;c.壁心的构造裂缝,两期裂缝形态宽度相似,二长花岗岩,Y83-c井,2 833 m;d.薄片中的两组构造裂缝,二期裂缝的充填率要低于一期裂缝,二长花岗岩,Y83-c井,2 833 m;e.两期构造缝形成的缝网系统,花岗碎裂岩,Y81-c井,2 982 m;f.壁心上的溶蚀裂缝,缝洞体系是良好的储层空间,二长花岗岩,Y81-c井,3 058 m;g.薄片中的溶蚀裂缝,正长岩,Y81-c井,2 990 m;h.壁心上的成岩裂缝,裂缝不连续,二长花岗岩,Y131-c井,2 595 m;i.被充填的裂缝重新活化形成裂缝,闪长玢岩,Y81-d井,3 359 m。

    Figure  2.  Fracture characteristics of buried hill basement rocks of Qiongdongnan Basin

    图  3  琼东南盆地松南花岗岩潜山岩心成像测井中的裂缝统计特征

    a.Y81d井充填张开的构造裂缝,红色曲线表示未充填裂缝,黄色曲线表示已充填裂缝,绿色曲线表示层状花岗岩的层界线;b.Y81d井的溶蚀裂缝,注意沿裂缝发育的溶蚀孔洞;c.Y81d井的诱导裂缝;d.诱导裂缝的玫瑰花图显示了北西向最大主应力;e.根据成像测井计算统计的裂缝走向;f.基于成像测井的储层裂缝宽度频率统计;g.根据成像测井计算统计的裂缝角度。

    Figure  3.  Statistical characteristics of fractures in image logging of boreholes from Songnan granite buried hill, Qiongdongnan Basin

    图  4  松南潜山地震曲率切片及两组先存断裂解释

    Figure  4.  Interpretation of two pre-existing fault families in Songnan buried hill based on seismic coherent slice

    图  5  琼东南盆地松南低凸起Y81-c井潜山基岩储层分带结构

    Figure  5.  Zonation pattern of basement reservoir in well Y81-c in Songnan buried hill, Qiongdongnan Basin

    图  6  琼东南盆地潜山基底构造演化及裂缝相关储层形成模式

    Figure  6.  Tectonic evolution of basement and formation pattern of fracture-related reservoirs, Qiongdongnan Basin

  • [1] POWERS S. Reflected buried hills and their importance in petroleum geology[J]. Economic Geology, 1922, 17(4): 233-259. doi: 10.2113/gsecongeo.17.4.233
    [2] LEVORSEN A I. Geology of petroleum[M]. San Francisco: W. H. Freeman, 1954.
    [3] LANDES K K, AMORUSO J J, CHARLESWORTH JR L J, et al. Petroleum resources in basement rocks[J]. AAPG Bulletin, 1960, 44(10): 1682-1691.
    [4] 窦立荣, 魏小东, 王景春, 等. 乍得Bongor盆地花岗质基岩潜山储层特征[J]. 石油学报, 2015, 36(8): 897-904.

    DOU Lirong, WEI Xiaodong, WANG Jingchun, et al. Characte-ristics of granitic basement rock buried-hill reservoir in Bongor Basin, Chad[J]. Acta Petrolei Sinica, 2015, 36(8): 897-904.
    [5] 谢文彦, 孟卫工, 张占文, 等. 辽河坳陷潜山内幕多期裂缝油藏成藏模式[J]. 石油勘探与开发, 2006, 33(6): 649-652. doi: 10.3321/j.issn:1000-0747.2006.06.001

    XIE Wenyan, MENG Weigong, ZHANG Zhanwen, et al. Formation model of multi-stage fracture reservoirs inside the buried hills in Liaohe Depression[J]. Petroleum Exploration and Development, 2006, 33(6): 649-652. doi: 10.3321/j.issn:1000-0747.2006.06.001
    [6] 谢全民, 李锋, 马彩琴. 酒西盆地鸭儿峡油田志留系潜山油藏地质特征及油水分布[J]. 特种油气藏, 2001, 8(4): 5-7. doi: 10.3969/j.issn.1006-6535.2001.04.002

    XIE Quanmin, LI Feng, MA Caiqin. Geological characteristics and distribution of oil and water in Silurian buried hill reservoir in Yaerxia Oilfield, Jiuxi Basin[J]. Special Oil & Gas Reservoirs, 2001, 8(4): 5-7. doi: 10.3969/j.issn.1006-6535.2001.04.002
    [7] 夏云棚. 兴隆台潜山带兴北中生界储集岩特征评价[J]. 当代化工研究, 2019, 8(7): 76-77. doi: 10.3969/j.issn.1672-8114.2019.07.049

    XIA Yunpeng. Evaluation of Mesozoic reservoir rock characteristics in Xingbei of Xinglongtai buried hill zone[J]. Modern Chemical Research, 2019, 8(7): 76-77. doi: 10.3969/j.issn.1672-8114.2019.07.049
    [8] 侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1): 33-44.

    HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33-44.
    [9] 谢玉洪, 罗小平, 王德英, 等. 渤海湾盆地渤中凹陷西次洼中生界古潜山油气成藏过程[J]. 天然气工业, 2019, 39(5): 15-24.

    XIE Yuhong, LUO Xiaoping, WANG Deying, et al. Hydrocarbon accumulation of composite-buried hill reservoirs in the western subsag of Bozhong Sag, Bohai Bay Basin[J]. Natural Gas Industry, 2019, 39(5): 15-24.
    [10] 高长海, 查明, 赵贤正, 等. 渤海湾盆地冀中坳陷深层古潜山油气成藏模式及其主控因素[J]. 天然气工业, 2017, 37(4): 52-59.

    GAO Changhai, ZHA Ming, ZHAO Xianzheng, et al. Hydrocarbon accumulation models and their main controlling factors in the deep buried hills of the Jizhong Depression, Bohai Bay Basin[J]. Natural Gas Industry, 2017, 37(4): 52-59.
    [11] 夏庆龙, 周心怀, 王昕, 等. 渤海蓬莱9-1大型复合油田地质特征与发现意义[J]. 石油学报, 2013, 34(增刊2): 15-23. doi: 10.7623/syxb2013S2002

    XIA Qinglong, ZHOU Xinhuai, WANG Xi, et al. Geological characteristic and discovery significance of large-scale and compound oilfield of Penglai 9-1 in Bohai[J]. Acta Petrolei Sinica, 2013, 34(S2): 15-23. doi: 10.7623/syxb2013S2002
    [12] HOWARD J H, NOLEN-HOEKSEMA R C. Description of natural fracture systems for quantitative use in petroleum geology[J]. AAPG Bulletin, 1990, 74(2): 151-162.
    [13] FENG Jianwei, QU Jihang, WAN Huiqing, et al. Quantitative prediction of multiperiod fracture distributions in the Cambrian-Ordovician buried hill within the Futai Oilfield, Jiyang Depression, East China[J]. Journal of Structural Geology, 2021, 148: 104359. doi: 10.1016/j.jsg.2021.104359
    [14] LIU Guoping, ZENG Lianbo, LI Hongnan, et al. Natural fractures in metamorphic basement reservoirs in the Liaohe Basin, China[J]. Marine and Petroleum Geology, 2020, 119: 104479. doi: 10.1016/j.marpetgeo.2020.104479
    [15] YE T, CHEN AQ, NIU C M, et al. Effective fractures linked with tectonic reactivation and multiple genetic fluids in the ultradeep Paleozoic carbonate buried hills of the Bozhong Sag, North China[J]. Marine and Petroleum Geology, 2022, 140: 105642. doi: 10.1016/j.marpetgeo.2022.105642
    [16] 张迎朝, 甘军, 徐新德, 等. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式[J]. 地球科学, 2019, 44(8): 2609-2618.

    ZHANG Yingzhao, GAN Jun, XU Xinde, et al. The source and natural gas lateral migration accumulation model of Y8-1 gas bearing structure, east deep water in the Qiongdongnan Basin[J]. Earth Science, 2019, 44(8): 2609-2616.
    [17] 施和生, 杨计海, 张迎朝, 等. 琼东南盆地地质认识创新与深水领域天然气勘探重大突破[J]. 中国石油勘探, 2019, 24(6): 691-698.

    SHI Hesheng, YANG Jihai, ZHANG, Yingzhao, et al. Geological understanding innovation and major breakthrough in natural gas exploration in deep water, Qiongdongnan Basin[J]. China Petroleum Exploration, 2019, 24(6): 691-698.
    [18] 徐守立, 尤丽, 毛雪莲, 等. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素[J]. 地球科学, 2019.44(8): 2717-2728.

    XU Shouli, YOU Li, MAO Xuelian, et al. Reservoir characteristics and controlling factors of granite buried hill in Songnan low uplift, Qiongdongnan Basin[J]. Earth Science, 2019, 44(8): 2717-2728.
    [19] YOU Li, XU Shouli, MAO Xuelian, et al. Reservoir characteristics and genetic mechanisms of the Mesozoic granite buried hills in the deep-water of the Qiongdongnan Basin, northern South China Sea[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 259-267. doi: 10.1111/1755-6724.14635
    [20] 邱宇, 李安琪, 周杰, 等. 琼东南盆地深水区松南低凸起花岗岩风化壳储层底界面识别技术[J]. 海洋地质前沿, 2021, 37(7): 87-96.

    QIU Yu, LI Anqi, ZHOU Jie, et al. Calibrating the bottom interface of granite weathering crust reservoir on the Songnan lift in the deep water areas of Qiongdongnan Basin[J]. Marine Geology Frontiers, 2021, 37(7): 87-96.
    [21] 李鸿明. 琼东南盆地松南低凸起中生代花岗岩潜山储层特征及控制因素分析[D]. 吉林: 吉林大学, 2022.

    LI Hongming. Reservoir characteristics and controlling factors of Mesozoic granite buried-hill in Songnan low uplift, Qiongdongnan Basin[D]. Jilin: Jilin University, 2022.
    [22] 唐历山, 范彩伟, 张焱, 等. 琼东南盆地花岗岩潜山发育演化及控藏作用[J]. 海洋地质前沿, 2023, 39(3): 81-90.

    TANG Lishan, FAN Caiwei, ZHANG Yan, et al. Tectonic evolution of granite buried hill and its control on reservoir accumulation in Qiongdongnan Basin[J]. Marine Geology Frontiers, 2023, 39(3): 81-90.
    [23] 鲁宝亮, 王璞珺, 张功成, 等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报, 2011, 32(4): 580-587.

    LU Baoliang, WANG Pujun, ZHANG Gongcheng, et al. Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum prospect[J]. Acta Petrolei Sinica, 2011, 32(4): 580-587.
    [24] 甘军, 季洪泉, 梁刚, 等. 琼东南盆地中生界潜山天然气成藏模式[J]. 现代地质, 2022, 36(5): 1242-1253.

    GAN Jun, JI Hongquan, LIANG Gang, et al. Gas accumulation model of Mesozoic buried hill in Qiongdongnan Basin[J]. Geoscience, 2022, 36(5): 1242-1253.
    [25] 鲁宝亮, 王璞珺, 梁建设, 等. 古南海构造属性及其与特提斯和古太平洋构造域的关系[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1441-1450.

    LU Baoliang, WANG Pujun, LIANG Jianshe, et al. Structural properties of Paleo-South China Sea and their relationship with the Tethys and the Paleo-Pacific tectonic domain[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5): 1441-1450.
    [26] 毛建仁, 厉子龙, 叶海敏. 华南中生代构造—岩浆活动研究: 现状与前景[J]. 中国科学: 地球科学, 2014, 44(12): 2593-2617.

    MAO Jianren, LI Zilong, YE Haimin. Mesozoic tectono-magmatic activities in South China: retrospect and prospect[J]. Science China: Earth Sciences, 2014, 57(12): 2853-2877.
    [27] 张岳桥, 徐先兵, 贾东, 等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 2009, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026

    ZHANG Yueqiao, XU Xianbing, JIA Dong, et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 2009, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
    [28] 朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1): 88-101.

    ZHU Weilin, WU Jingfu, ZHANG Gongcheng, et al. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins[J]. Earth Science Frontiers, 2015, 22(1): 88-101.
    [29] 何家雄, 夏斌, 孙东山, 等. 琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J]. 石油勘探与开发, 2006, 33(1): 53-58. doi: 10.3321/j.issn:1000-0747.2006.01.012

    HE Jiaxiong, XIA Bin, SUN Dongshan, et al. Hydrocarbon accumulation, migration and play targets in the Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2006, 33(1): 53-58. doi: 10.3321/j.issn:1000-0747.2006.01.012
    [30] 侯明才, 何小胡, 金秋月, 等. 琼东南盆地中生代潜山成储主控因素及分布规律[J]. 石油与天然气地质, 2023, 44(3): 637-650.

    HOU Mingcai, HE Xiaohu, JIN Qiuyue, et al. Factors controlling the formation and distribution of Mesozoic buried hill reservoirs in the Qiongdongnan Basin[J]. Oil & Gas Geology, 2023, 44(3): 637-650.
    [31] AWDAL A, HEALY D, ALSOP G I. Fracture patterns and petrophysical properties of carbonates undergoing regional folding: a case study from Kurdistan, N Iraq[J]. Marine and Petroleum Geology, 2016, 71: 149-167. doi: 10.1016/j.marpetgeo.2015.12.017
    [32] LAI Jin, WANG Guiwen, WANG Song, et al. A review on the applications of image logs in structural analysis and sedimentary characterization[J]. Marine and Petroleum Geology, 2018, 95: 139-166. doi: 10.1016/j.marpetgeo.2018.04.020
    [33] KEETON G I, PRANTER M J, COLE R D, et al. Stratigraphic architecture of fluvial deposits from borehole images, spectral-gamma-ray response, and outcrop analogs, Piceance Basin, Colorado[J]. AAPG Bulletin, 2015, 99(10), 1929-1956. doi: 10.1306/05071514025
    [34] YE T, WEI A J, SUN Z, et al. The reservoir characteristics and their significance for deliverability in metamorphic granite buried hill: a case study from the JZS oil field in the Liaodong Bay Basin, NE China[J]. Arabian Journal of Geosciences, 2019, 12(20): 630. doi: 10.1007/s12517-019-4823-0
    [35] 黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 2006, 27(6): 65-69. doi: 10.3321/j.issn:0253-2697.2006.06.014

    HUANG Jixin, PENG Shimi, WANG Xiaojun, et al. Applications of imaging logging data in the research of fracture and ground stress [J]. Acta Petrolei Sinica, 2006, 27(6): 65-69. doi: 10.3321/j.issn:0253-2697.2006.06.014
    [36] 冷杰, 刘杰, 陈安清, 等. 珠江口盆地惠州26-6潜山中生代中基性火山岩储层成因[J]. 成都理工大学学报(自然科学版), 2021, 48(6): 661-674.

    LENG Jie, LIU Jie, CHEN Anqing, et al. Genesis of Mesozoic intermediate-basic volcanic reservoirs in Huizhou 26-6 buried hill, Pearl River Mouth Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(6): 661-674.
    [37] 曾联波, 王正国, 肖淑容, 等. 中国西部盆地挤压逆冲构造带低角度裂缝的成因及意义[J]. 石油学报, 2009, 30(1): 56-60.

    ZENG Lianbo, WANG Zhengguo, XIAO Shurong, et al. The origin and geological significance of low dip-angle fractures in the thrust zones of the western basins of China[J]. Acta Petrolei Sinica, 2009, 30(1): 56-60.
    [38] DHANSAY T, NAVABPOUR P, DE WIT M, et al. Assessing the reactivation potential of pre-existing fractures in the southern Karoo, South Africa: evaluating the potential for sustainable exploration across its critical zone[J]. Journal of African Earth Sciences, 2017, 134: 504-515. doi: 10.1016/j.jafrearsci.2017.07.020
  • 加载中
图(6)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2024-09-28
  • 刊出日期:  2024-11-28

目录

    /

    返回文章
    返回