Causes and geochemical significance of total organic carbon anomaly in solid residue samples from source rock pyrolysis simulation experiments in a closed system
-
摘要: 自然演化条件下,烃源岩总有机碳(TOC)含量通常随着成熟度的增加而持续降低;但在封闭体系热模拟实验的晚期阶段,固体渣样的TOC呈现“不减反增”的异常现象。基于银根—额济纳旗盆地中生界湖相烃源岩样品的热模拟实验等相关测试资料,分析TOC异常变化成因,探讨了其地球化学意义。研究认为,造成这种异常现象的原因与原油二次裂解有关。由于热模拟为封闭体系,早期生成的原油因无法排出而滞留在反应釜内,随着热模拟温度的增加,原油开始大规模裂解,原油转化成气态烃的同时产生焦沥青,“不可溶”的焦沥青附着在固体渣样上导致TOC增大。该研究还建立了一种确定不同类型烃源岩所生油裂解气主生气门限的方法,即基于封闭热模拟实验固体渣样的TOC变化曲线来确定油裂解气主生气门限,因为焦沥青的大量生成会导致固体渣样TOC的增加,也是原油开始大规模裂解生气的重要标志。这种方法解决了现有方法的不足,如在厘定主生气门限时存在不可避免的人为误差、无法对混源油开展更为深入研究等。Abstract: Under natural evolution, the total organic carbon (TOC) content of source rocks typically decreases as maturity increases. However, in later stages of pyrolysis simulation experiments conducted in a closed system, the TOC content of solid residue samples would anomalously increase instead of decreasing. By analyzing data from pyrolysis simulation experiments on lacustrine source rock samples from the Mesozoic Yingen-Ejinaqi Basin, the causes of this TOC content anomaly were investigated, and its geochemical significance was explored. The results suggested that this anomaly was related to secondary cracking of crude oil. In the closed system of the experiments, early-formed crude oil was trapped in the reactor, unable to be discharged. As the temperature increased, large-scale oil cracking occurred, converting it into gaseous hydrocarbons and generating pyrobitumen. The insoluble pyrobitumen adhered to the solid residue samples, resulting in an increase of TOC content. Based on TOC variation curve of solid residue samples from the pyrolysis simulation experiments, a new method was established to determine the main gas generation threshold for oil cracking in different types of source rocks. The significant amount of pyrobitumen generated, accompanied by an increase in TOC content, indicated the onset of large-scale oil cracking and gas generation. This method overcomes the shortcomings of existing methods, such as inevitable human errors in determining the main gas generation threshold and the inability to conduct more in-depth study on mixed-source oils.
-
图 8 不同裂解程度下原油组成变化的概念模型
据文献[44]修改。
Figure 8. Conceptual model of crude oil compositional changes under different cracking stages
图 9 基于热模拟实验的典型原油生气转化率曲线特征
据文献[42]修改。
Figure 9. Characteristics of typical oil-to-gas conversion rate curves based on pyrolysis simulation experiments
表 1 银根—额济纳旗盆地中生界烃源岩热模拟固体残渣样品和自然演化烃源岩样品Ro测试数据
Table 1. Ro data of solid residues of pyrolysis simulation experiments and samples under natural evolution conditions of Mesozoic, Yingen-Ejinaqi Basin
样品 样品编号 热模拟温度/℃ 样品埋深/m Ro/% 测点数 最大值 最小值 平均值 热模拟固体渣样 PSE-1 250 0.659 0.501 0.600 31 PSE-2 300 0.664 0.514 0.610 31 PSE-3 350 0.895 0.562 0.750 36 PSE-4 375 1.086 0.732 0.840 39 PSE-5 400 1.321 1.022 1.120 39 PSE-6 425 1.627 1.262 1.450 35 PSE-7 450 1.941 1.624 1.790 30 PSE-8 475 2.095 1.629 1.830 39 PSE-9 500 2.362 1.767 2.060 30 PSE-10 550 2.661 2.193 2.390 35 钻井烃源岩样品 H2-1 1 060.60 0.700 0.485 0.600 39 H2-2 1 063.27 0.703 0.556 0.650 34 H8-1 1 283.38 0.834 0.623 0.730 36 H3-1 1 707.92 1.383 0.825 1.080 33 H3-2 1 710.31 1.252 1.192 1.220 36 H3-3 1 719.23 1.290 1.122 1.230 32 H3-4 1 768.37 1.540 1.060 1.340 32 HC1-1 2 912.36 2.592 1.869 2.150 37 HC1-2 3 073.03 2.456 1.890 2.120 31 HC1-3 3 076.97 2.398 2.022 2.270 30 -
[1] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer-Verlag, 1978. [2] COOLES G P, MACKENZIE A S, QUIGLEY T M. Calculation of petroleum masses generated and expelled from source rocks[J]. Organic Geochemistry, 1986, 10(1/3): 235-245. [3] SCHEEDER G, WENIGER P, BLUMENBERG M. Geochemical implications from direct Rock-Eval pyrolysis of petroleum[J]. Organic Geochemistry, 2020, 146: 104051. doi: 10.1016/j.orggeochem.2020.104051 [4] 卢双舫, 薛海涛, 钟宁宁. 地史过程中烃源岩有机质丰度和生烃潜力变化的模拟计算[J]. 地质评论, 2003, 49(3): 292-297.LU Shuangfang, XUE Haitao, ZHONG Niuniu. Simulating calculation of the variations of organic matter abundance and hydrocarbon-generating potential during geological processes[J]. Geological Review, 2003, 49(3): 292-297. [5] 庞雄奇, 李倩文, 陈践发, 等. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用[J]. 古地理学报, 2014, 16(6): 769-789.PANG Xiongqi, LI Qianwen, CHEN Jianfa, et al. Recovery method of original TOC and its application in source rocks at high mature-over mature stage in deep petroliferous basins[J]. Journal of Palaeogeography, 2014, 16(6): 769-789. [6] 姜福杰, 庞雄奇, 姜振学, 等. 海拉尔盆地乌尔逊及贝尔凹陷烃源岩有机质丰度的恢复[J]. 石油实验地质, 2008, 30(1): 82-85. doi: 10.3969/j.issn.1001-6112.2008.01.016JIANG Fujie, PANG Xiongqi, JIANG Zhengxue, et al. Restitution of organic abundance of the hydrocarbon source rocks in the Wuerxun and the Beier sags, the Hailaer Basin[J]. Petroleum Geology & Experiment, 2008, 30(1): 82-85. doi: 10.3969/j.issn.1001-6112.2008.01.016 [7] WAPLES D W. Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin, 1980, 64(6): 916-926. [8] HUNT J M. Petroleum geochemistry and geology[M]. San Francisco: W.H. Freeman, 1979: 67-178. [9] 米敬奎, 张水昌, 王晓梅. 不同类型生烃模拟实验方法对比与关键技术[J]. 石油实验地质, 2009, 31(4): 409-414. doi: 10.3969/j.issn.1001-6112.2009.04.018MI Jingkui, ZHANG Shuichang, WANG Xiaomei. Comparison of different hydrocarbon generation simulation approaches and key technique[J]. Petroleum Geology & Experiment, 2009, 31(4): 409-414. doi: 10.3969/j.issn.1001-6112.2009.04.018 [10] 彭威龙, 胡国艺, 刘全有, 等. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252-1263.PENG Weilong, HU Guoyi, LIU Quanyou, et al. Research status on thermal simulation experiment and several issues for concerns[J]. Natural Gas Geoscience, 2018, 29(9): 1252-1263. [11] CHEN Zhijun, WEN Zhigang, ZHANG Chunming, et al. A study on the applicability of aromatic parameters in the maturity evaluation of lacustrine source rocks and oils based on pyrolysis simulation experiments[J]. ACS Omega, 2023, 8(30): 27674-27687. doi: 10.1021/acsomega.3c03558 [12] CHEN Zhijun, ZHANG Yaxiong, WEN Zhigang, et al. Study on the applicability of saturated hydrocarbon parameters in the evaluation of lacustrine source rocks and oils based on thermal simulation experiments[J]. Processes, 2023, 11(7): 2187. doi: 10.3390/pr11072187 [13] 许璟, 葛云锦, 贺永红, 等. 鄂尔多斯盆地延长探区长7油层组泥页岩孔隙结构定量表征与动态演化过程[J]. 石油与天然气地质, 2023, 44(2): 292-307.XU Jing, GE Yunjin, HE Yonghong, et al. Quantitative characterization and dynamic evolution of pore structure in shale reservoirs of Chang 7 oil layer group in Yanchang area, Ordos Basin[J]. Oil & Gas Geology, 2023, 44(2): 292-307. [14] SUN Jian, XIAO Xianming, CHENG Peng, et al. The relationship between oil generation, expulsion and retention of lacustrine shales: based on pyrolysis simulation experiments[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107625. doi: 10.1016/j.petrol.2020.107625 [15] WANG Qianru, HUANG Haiping, HE Chuan, et al. Methylation and demethylation of naphthalene homologs in highly thermal mature sediments[J]. Organic Geochemistry, 2022, 163: 104343. doi: 10.1016/j.orggeochem.2021.104343 [16] PETERS K E, HACKLEY P C, THOMAS J J, et al. Suppression of vitrinite reflectance by bitumen generated from liptinite during hydrous pyrolysis of artificial source rock[J]. Organic Geochemistry, 2018, 125: 220-228. doi: 10.1016/j.orggeochem.2018.09.010 [17] YE Jiaren, YANG Xianghua, WANG Lianjin. Petroleum systems of Chagan Depression, Yingen-Ejinaqi Basin, Northwest China[J]. Journal of China University of Geosciences, 2005, 17(1): 55-64. doi: 10.3969/j.issn.1671-0169.2005.01.011 [18] YU Qiang, WANG Baojiang, REN Zhanli, et al. Characteristics and evolution of faults in the north-central Yin'E Basin and the effects on the coal-seam in the Cretaceous strata[J]. Frontiers of Earth Science, 2023, 17(1): 30-44. doi: 10.1007/s11707-022-1031-0 [19] YANG Runze, ZHAO Changyi. Tectonic characteristics and favorable exploration regions of Guaizihu Sag in Yin'E Basin[J]. IOP Conference Series: Earth and Environmental Science, 2019, 360(1): 012047. doi: 10.1088/1755-1315/360/1/012047 [20] NIU Zicheng, LIU Guangdi, CAO Zhe, et al. Geochemical characteristics, depositional environment, and controlling factors of Lower Cretaceous shales in Chagan Sag, Yingen-Ejinaqi Basin[J]. Geological Journal, 2018, 53(4): 1308-1321. doi: 10.1002/gj.2958 [21] QI Kai, REN Zhanli, CHEN Zhipeng, et al. Characteristics and controlling factors of lacustrine source rocks in the Lower Cretaceous, Suhongtu Depression, Yin-E Basin, Northern China[J]. Marine and Petroleum Geology, 2021, 127: 104943. doi: 10.1016/j.marpetgeo.2021.104943 [22] LIU Rong, LIU Zhaojun, GUO Wei, et al. Characteristics and comprehensive utilization potential of oil shale of the Yin'E Basin, Inner Mongolia, China[J]. Oil Shale, 2015, 32(4): 293-312. doi: 10.3176/oil.2015.4.02 [23] ZHANG Kun, LIU Rong, LIU Zhaojun, et al. Influence of palaeoclimate and hydrothermal activity on organic matter accumulation in lacustrine black shales from the Lower Cretaceous Bayingebi Formation of the Yin'E Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110007. doi: 10.1016/j.palaeo.2020.110007 [24] 国家能源局. 岩石中抽提物含量测定: SY/T 5118—2021[S]. 北京: 石油工业出版社, 2021.National Energy Administration. Determination of extract content in rocks: SY/T 5118-2021[S]. Beijing: Petroleum Industry Press, 2021. [25] 国家市场监督管理总局, 国家标准化管理委员会. 沉积岩中总有机碳测定: GB/T 19145—2022[S]. 北京: 中国标准出版社, 2022.State Administration for Market Regulation, Standardization Administration. Determination for total organic carbon in sedimentary rock: GB/T 19145-2022[S]. Beijing: Standards Press of China, 2022. [26] 国家能源局. 沉积岩中镜质体反射率测定方法: SY/T 5124—2012[S]. 北京: 石油工业出版社, 2012.National Energy Administration. Method of determining microscopically the reflectance of vitrinite in sedimentary: SY/T 5124-2012[S]. Beijing: Petroleum Industry Press, 2012. [27] 中国石油天然气总公司. 陆相烃源岩地球化学评价方法: SY/T 5735—1995[S]. 北京: 石油工业出版社, 1996.China National Petroleum Corporation. Geochemical evaluation standard of terrestrial hydrocarbon source rock: SY/T 5735-1995[S]. Beijing: Petroleum Industry Press, 1996. [28] 卢双舫, 张敏. 油气地球化学[M]. 2版. 北京: 石油工业出版社, 2017: 104-116.LU Shuangfang, ZHANG Min. Oil and gas geochemical[M]. 2nd ed. Beijing: Petroleum Industry Press, 2017: 104-116. [29] 袁东山, 王国斌, 汤泽宁, 等. 测井资料评价烃源岩方法及其进展[J]. 石油天然气学报, 2009, 31(4): 192-194. doi: 10.3969/j.issn.1000-9752.2009.04.046YUAN Dongshan, WANG Guobin, TANG Zening, et al. Methods for evaluating source rocks by well-logging data and its progress[J]. Journal of Oil and Gas Technology, 2009, 31(4): 192-194. doi: 10.3969/j.issn.1000-9752.2009.04.046 [30] 庞雄奇, 方祖康, 陈章明. 地史过程中的岩石有机质含量变化及其计算[J]. 石油学报, 1988, 9(1): 17-24.PANG Xiongqi, FANG Zukang, CHEN Zhangming. Ancient abundance of organic matter and its calculation method[J]. Acta Petrolei Sinica, 1988, 9(1): 17-24. [31] 王昌勇, 孟祥豪, 魏亚琼, 等. 咸水湖盆沉积物原始有机碳定量恢复的新方法: 以青海湖布哈河口区沉积物为例[J]. 湖泊科学, 2018, 30(2): 552-566.WANG Changyong, MENG Xianghao, WEI Yaqiong, et al. A new method of reconstruction of original total organic carbon for sediments in salt water lakes: a case study on modern sediments in Buha River Estuary, Lake Qinghai[J]. Journal of Lake Sciences, 2018, 30(2): 552-566. [32] 崔鹏. 烃源岩有机质丰度恢复方法综述[J]. 断块油气田, 2007, 14(5): 15-17. doi: 10.3969/j.issn.1005-8907.2007.05.005CUI Peng. Review on recovering method of organic matter abundance in hydrocarbon source rock[J]. Fault-Block Oil & Gas Field, 2007, 14(5): 15-17. doi: 10.3969/j.issn.1005-8907.2007.05.005 [33] 张丽洁, 麦碧娴, 汪本善, 等. 楚雄盆地高成熟煤成烃源岩中原始有机质丰度和原始产烃潜力的恢复[J]. 地球化学, 1996, 25(4): 339-345. doi: 10.3321/j.issn:0379-1726.1996.04.005ZHANG Lijie, MAI Bixian, WANG Benshan, et al. Reconstruction of original organic matter abundance and its hydrocarbon-generating potentialities in a high mature coal-bearing strata in Chuxiong Basin[J]. Geochimica, 1996, 25(4): 339-345. doi: 10.3321/j.issn:0379-1726.1996.04.005 [34] 李勇, 陈世加, 尹相东, 等. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版), 2020, 50(3): 732-746.LI Yong, CHEN Shijia, YIN Xiangdong, et al. Research status, geological significance and development trend of solid bitumen in reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3): 732-746. [35] WU Liangliang, LIU Shufen, FANG Xinyan, et al. Formation of pyrobitumen from different types of crude oils and its significance: insight from elemental composition analysis[J]. Marine and Petroleum Geology, 2023, 152: 106227. doi: 10.1016/j.marpetgeo.2023.106227 [36] HE Meng, WANG Zhaoyun, MOLDOWAN M J, et al. Insights into catalytic effects of clay minerals on hydrocarbon composition of generated liquid products during oil cracking from laboratory pyrolysis experiments[J]. Organic Geochemistry, 2022, 163: 104331. doi: 10.1016/j.orggeochem.2021.104331 [37] YANG Chengyu, LI Meijun, WANG Tieguan, et al. Texture development of mesophase in reservoir pyrobitumen and the temperature-pressure converting of the gas reservoir in the Chuanzhong Uplift, Southwestern China[J]. Petroleum Science, 2023, 20(2): 721-732. doi: 10.1016/j.petsci.2022.09.017 [38] WANG Xing, TIAN Hui, ZHOU Qin, et al. Origin and formation of pyrobitumen in Sinian-Cambrian reservoirs of the Anyue gas field in the Sichuan Basin: implications from pyrolysis experiments of different oil fractions[J]. Energy & Fuels, 2021, 35(2): 1165-1177. [39] 钟宁宁, 卢双舫, 黄志龙, 等. 烃源岩TOC值变化与其生排烃效率关系的探讨[J]. 沉积学报, 2004, 22(S1): 73-78.ZHONG Ningning, LU Shuangfang, HUANG Zhilong, et al. An approach to the evolution of TOC value for source rock and its relation to efficiencies of hydrocarbon generation and expulsion[J]. Acta Sedimentologica Sinica, 2004, 22(S1): 73-78. [40] 钟宁宁, 卢双舫, 黄志龙, 等. 烃源岩生烃演化过程TOC值的演变及其控制因素[J]. 中国科学(D辑: 地球科学), 2004, 34(S1): 120-126.ZHONG Ningning, LU Shuangfang, HUANG Zhilong, et al. The evolution and controlling factors of TOC values during hydrocarbon generation and evolution of source rocks[J]. Science in China (Series D: Earth Sciences), 2004, 34(S1): 120-126. [41] 万成祥. 海相页岩自封闭机理及控制因素: 以四川盆地龙马溪组为例[D]. 北京: 中国石油大学(北京), 2023.WAN Chengxiang. Self-sealing mechanism and controlling factors of marine shale: a case study of Longmaxi Formation in Sichuan Basin[D]. Beijing: China University of Petroleum, Beijing, 2023. [42] 赵文智, 王兆云, 张水昌, 等. 油裂解生气是海相气源灶高效成气的重要途径[J]. 科学通报, 2006, 51(5): 589-595.ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al. Oil cracking: an important way for highly efficient generation of gas from marine source rock kitchen[J]. Chinese Science Bulletin, 2005, 50(22): 2628-2635. [43] 陈中红. 原油裂解成气研究进展[J]. 山东科技大学学报(自然科学版), 2012, 31(3): 22-31.CHEN Zhonghong. Research progress of oil cracking into gas[J]. Journal of Shandong University of Science and Technology (Natural Science), 2012, 31(3): 22-31. [44] HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. [45] 张志伟, 姜泽军, 邵明礼, 等. 松辽盆地滨北地区烃源岩定性评价及生油门限确定[J]. 大庆石油学院学报, 2010, 34(4): 7-11.ZHANG Zhiwei, JIANG Zejun, SHAO Mingli, et al. Source rock qualitative evaluation in Binbei area of Songliao Basin and determination of hydrocarbon generating threshold[J]. Journal of Daqing Petroleum Institute, 2010, 34(4): 7-11. [46] SI Wei, HOU Dujie, WU Piao, et al. Geochemical characteristics of Lower Cretaceous lacustrine organic matter in the southern sag of the Wuliyasitai Depression, Erlian Basin, China[J]. Marine and Petroleum Geology, 2020, 118: 104404. [47] 陈治军, 高怡文, 刘护创, 等. 银根—额济纳旗盆地哈日凹陷下白垩统烃源岩地球化学特征与油源对比[J]. 石油学报, 2018, 39(1): 69-81.CHEN Zhijun, GAO Yiwen, LIU Huchuang, et al. Geochemical characteristics of Lower Cretaceous source rocks and oil-source correlation in Hari Sag, Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 69-81.