Characteristics of Chang 7 shale gas reservoirs in Triassic Yanchang Formation of Ordos Basin and its exploration and development prospects
-
摘要: 鄂尔多斯盆地作为我国的第二大沉积盆地,油气勘探潜力巨大。盆地内三叠系延长组7段富有机质烃源岩发育广泛,分布范围达(4~5)×104 km2。该套烃源岩有机质丰度高,有机质类型为Ⅰ—Ⅱ1型,Ro主要分布在0.9%~1.2%之间,处于热演化成熟阶段,滞留烃含量大,为大规模页岩油气藏的发育奠定了重要物质基础。长73亚段富有机质泥页岩层段虽具备良好的含气性,但却缺乏深入的含气特征系统分析。以盆地西缘南段地区为例,利用岩石地球化学、有机地球化学、同位素分析等多种分析手段,查明了该区三叠系延长组长7段烃源岩储层地质及地球化学特征,分析了长7段页岩含气性特征、页岩气赋存状态,初步计算了长7段页岩气资源量。研究区内三叠系延长组长73亚段黑色页岩含气性良好,其组成以页岩油溶解气为主,含少量干酪根黏土矿物吸附气及游离气,计算平均解吸气量为1.91 m3/t。长73亚段赋存页岩油、气资源,二者资源量相当,在后期勘探开发研究中建议考虑油气并举的可能性。湖盆中部厚层长7段黑色页岩发育区含气量达2 m3/t,储层刚性矿物及微孔裂隙发育,含气丰度高,资源量大,为页岩气有利勘探区域。初步计算长7页岩气总资源量约为4.25×1012 m3,具有良好的勘探前景,勘探有利地区为姬塬—固城—正宁一带。Abstract: As the second-largest sedimentary basin in China, the Ordos Basin has enormous potential for oil and gas exploration. The Chang 7 member of the Triassic Yanchang Formation in the basin is extensively distributed with organic-rich source rocks, covering an area of 40 000 to 50 000 km2. These source rocks are characterized by high organic content, with organic matter types mainly being type Ⅰ to Ⅱ1. The Ro values mostly range from 0.9% to 1.2%, indicating that they are in thermal maturity stage. The high content of retained hydrocarbons provides a strong material basis for the development of large-scale shale oil and gas reservoirs. Although the organic-rich mud shale layers in the Chang 73 sub-member have good gas-bearing properties, a systematic analysis of their gas-bearing characteristics is lacking. Using the southern part of the basin's western margin as a case study, multiple analytical methods such as rock geochemistry, organic geochemistry, and isotope analysis were used to identify the geological and geochemical characteristics of the source rock reservoirs in the Chang 7 member. The gas-bearing characteristics and shale gas occurrence states of the Chang 7 member were analyzed, and the shale gas resource potential was preliminarily calculated. The results indicated that the black shale of the Chang 73 sub-member in the study area exhibited good gas-bearing properties, with dissolved shale oil gas being the main component, along with minor amounts of adsorbed gas of kerogen clay minerals and free gas. The average volume of desorption gas was calculated to be 1.91 m3/t. The Chang 73 sub-member contained both shale oil and gas resources, with approximately equivalent quantities. It is recommended to consider both oil and gas development in future exploration and development research. In the central part of the lake basin, where thick black shale of the Chang 7 member occurred, gas content reached 2 m3/t. These reservoirs contained rigid minerals, micropores, and fractures, with high gas abundance and substantial resource potential, making this a favorable area for shale gas exploration. The total shale gas resource of the Chang 7 member was preliminarily estimated to be about 4.25×1012 m3, indicating promising exploration prospects. The favorable exploration areas were identified in the Jiyuan, Gucheng and Zhengning area.
-
Key words:
- shale gas /
- reservoir /
- geochemical characteristics /
- Chang 7 member /
- Yanchang Formation /
- Triassic /
- Ordos Basin
-
图 10 鄂尔多斯盆地研究区三叠系延长组长7泥页岩(a)与美国Barnett页岩(b)矿物成分三角图
b图据参考文献[36]修改。
Figure 10. Ternary diagram of mineral compositions in mud shale (a) from Chang 7 member of Triassic Yanchang Formation in study area, Ordos Basin, and Barnett shale (b) from USA
表 1 鄂尔多斯盆地研究区泥页岩样品信息及分析测试项目
Table 1. Information on mud shale samples and analysis items in study area, Ordos Basin
测试项目 井号 数量 有机碳分析 Y67、YJ1、M53等 405 岩石热解 Y67、YJ1、M53等 405 氯仿沥青抽提 Y67、YJ1、M53等 135 镜质体反射率 Y67、YJ1、M53等 39 生烃热模拟 M53 2 核磁共振 Y67、L196、Ya56、Li57 7 单体碳同位素分析 D214、S218、YUAN494等 12 气相色谱分析 Y67、YJ1、D214等 11 X射线衍射分析 Y67、YJ1、M53等 121 扫描电镜分析 Li57 2 含气量测试 YJ1、D214等 17 表 2 鄂尔多斯盆地M53井长7段黑色页岩生烃热模拟结果
Table 2. Thermal simulation results of hydrocarbon generation of black shale from Chang 7 member in well M53, Ordos Basin
样品号 井深/m ω(TOC)/% 模拟温度/℃ Ro/% 总液态烃产率/(mg/g) C1-C5产率/(mL/g) 总烃产率/(mg/g) M1-30 2 391.8 3.29 300 0.59 227.504 0.04 227.544 M1-32 2 391.8 3.30 320 0.62 241.996 1.51 243.506 M1-34 2 391.8 3.09 340 0.78 405.912 4.94 410.852 M1-36 2 391.8 2.67 360 0.92 500.976 17.48 518.456 M1-38 2 391.8 2.33 380 1.10 433.820 35.83 469.650 M1-40 2 391.8 2.25 400 1.35 313.448 65.63 379.078 M1-42 2 391.8 2.31 420 1.50 311.940 72.92 384.860 M1-44 2 391.8 2.18 440 1.86 275.272 75.32 350.592 M1-46 2 391.8 2.29 460 1.65 111.914 64.41 176.324 表 3 鄂尔多斯盆地研究区三叠系延长组长7段暗色泥页岩可溶有机质氯仿沥青“A”特征
Table 3. Characteristics of chloroform asphalt "A" in soluble organic matter from dark mud shale in Chang 7 member of Triassic Yanchang Formation in study area, Ordos Basin
井号 深度/m ω(TOC)/ % 氯仿沥青“A”/% 氯仿沥青“A”(恢复)/% 氯仿沥青“A”/ 岩石体积/% 核磁共振孔隙度/% 氯仿沥青“A”/ (岩石体积/孔隙度) Y67 2 033.02 2.97 0.33 0.43 1.05 2.80 0.38 L196 2 663.62 7.42 0.93 0.21 2.96 2.68 1.10 Ya56 2 978.80 4.69 0.70 0.91 2.22 2.17 1.02 Ya56 3 002.75 3.33 0.48 0.63 1.53 3.00 0.51 Ya56 3 034.70 6.63 1.15 1.49 3.64 2.19 1.66 Li57 2 329.20 7.90 0.81 1.05 2.57 2.07 1.24 Li57 2 331.40 8.39 0.78 1.01 2.48 2.29 1.08 表 4 鄂尔多斯盆地研究区三叠系延长组长7段页岩解吸气及中生界石油伴生气色谱组分
Table 4. Chromatographic component data of associated petroleum gas from Mesozoic and desorption gas of shale from Chang 7 member of Triassic Yanchang Formation in study area, Ordos Basin
井号 井深/m 层位 组分含量/% N2/ % 烃/% 相对密度 甲烷化系数 气体类型 CH4 C2H6 C3H8 C4H10 iC5H12 nC5H12 iC6H14 nC6H14 CO2 Y67 2 050.55 长7段 78.212 7.852 2.073 0.075 0.002 0.019 0.007 0.003 0.478 11.075 88.447 0.559 0 0.884 页岩解吸气 Y67 2 040.05 长7段 80.542 8.333 2.053 0.069 0.002 0.016 0.005 0.002 0.380 8.407 91.213 0.575 0 0.883 YJ1 2 037.08 长7段 80.827 7.804 3.440 0.181 0.005 0.036 0.011 0.002 1.417 5.854 92.722 0.672 5 0.872 YJ1 2 050.75 长7段 84.001 5.923 2.151 0.111 0.003 0.023 0.013 0.003 0.184 7.333 92.476 0.640 8 0.908 YJ1 2 050.75 长7段 79.434 8.753 3.575 0.171 0.004 0.028 0.009 0.002 0.503 7.158 92.334 0.673 7 0.860 D214 1 150.50 长7段 74.205 8.262 4.673 0.322 0.010 0.109 0.051 0.017 0.358 11.245 88.374 0.709 2 0.839 D214 1 173.85 长7段 41.629 7.787 6.413 0.636 0.023 0.228 0.089 0.024 0.889 4.091 58.106 0.869 2 0.715 砂岩解吸气 S218 2 306 长9段 80.854 8.002 5.098 0.637 0.025 0.208 0.115 0.054 0.144 3.695 96.098 0.695 5 0.841 原油伴生气 YUAN494 1 986 延10段 57.901 5.609 4.236 0.542 0.050 0.540 0.440 0.219 0.272 29.622 70.852 0.804 4 0.814 B192 2 066 长6段 82.297 9.040 5.445 0.498 0.252 0.324 0.099 0.092 0.179 0.522 99.271 0.698 0 0.829 Z26-36 1 200 长7段 81.525 4.624 3.665 0.397 0.013 0.106 0.045 0.006 0.017 8.847 91.137 0.584 0 0.895 表 5 鄂尔多斯盆地研究区三叠系延长组长7段页岩解吸气与中生界其他类型天然气单体碳同位素组成对比
Table 5. Comparison of individual carbon isotope compositions between shale desorption gas from Chang 7 member of Triassic Yanchang Formation in study area and other types of Mesozoic natural gas in Ordos Basin
井号 井深/m 层位 岩性 气体类型 取样回次 δ13C/‰ C1 C2 C3 iC4 nC4 YJ1 2 037.08 长7段 黑色页岩 页岩解吸气 第一次 -50.99 -40.76 -35.08 -34.80 -34.14 第二次 -51.69 -41.15 -35.13 -32.19 -35.66 第五次 -51.09 -40.80 -34.88 -33.61 2 050.75 长7段 黑色页岩 页岩解吸气 第一次 -51.26 -40.66 -35.07 -35.22 -33.25 第二次 -51.35 -41.02 -35.11 -35.37 -33.16 第五次 -51.83 -40.76 -34.36 -32.51 2 036.99 长7段 黑色页岩 页岩解吸气 第五次 -47.40 -41.21 -35.16 -35.71 -33.39 D214 1 150.50 长7段 黑色页岩 页岩解吸气 -48.04 -36.66 -32.61 -31.92 D214 1 173.85 长7段 致密砂岩 砂岩解吸气 -47.68 -36.39 -32.21 -33.49 -31.08 S218 2 306.00 长9段 原油伴生气 -46.33 -33.63 -31.06 -32.13 -30.75 YUAN494 1 986.00 延10段 原油伴生气 -46.96 -37.01 -33.51 -32.68 -33.51 YAN180 2 238.00 长8段 气藏气 -47.12 -31.42 -33.26 -33.13 -32.84 表 6 鄂尔多斯盆地研究区三叠系延长组长7现场取心罐装样含气量检测结果
Table 6. Gas content test results of canistered core samples from Chang 7 member of Triassic Yanchang Formation in study area, Ordos Basin
井号 井深/m TOC含量/ % 岩性 解吸气 残余气 总含气量/ (m3/t) 体积/ mL 岩石质量/ g 含气量/ (m3/t) 体积/ mL 岩石质量/ g 含气量/ (m3/t) L254 2 545.30 4.33 黑色页岩 757 736 1.03 68.44 269 0.25 1.28 2 553.70 8.88 黑色页岩 876 591 1.48 95.86 249 0.38 1.86 2 561.76 14.19 黑色页岩 946 736 1.29 82.17 298 0.28 1.57 Zh233 1 795.71 12.34 黑色页岩 946 565 1.67 175.00 157 1.11 2.78 Y67 2 040.05 11.05 黑色页岩 874 572 1.53 2 050.55 19.74 黑色页岩 3 263 1 016 3.21 YJ1 2 036.99 1.90 暗色泥岩 1 781 4 083 0.44 89.54 450 0.20 0.64 2 037.08 5.87 暗色泥岩 3 306 4 888 0.68 91.26 450 0.20 0.88 2 050.75 8.97 暗色泥岩 2 381 2 980 0.80 8.91 450 0.02 0.82 D214 1 150.50 3.98 暗色泥岩 2 588 4 797 0.54 8.91 450 0.02 0.56 1 173.85 1.99 致密砂岩 948 4 412 0.23 0.00 450 0.00 0.23 表 7 鄂尔多斯盆地三叠系延长组长7段泥页岩与古生界山西组2段煤系泥岩以及美国主要产气页岩地质特征对比
Table 7. Comparison of geological characteristics among mud shale from Chang 7 member of Triassic Yanchang Formation in Ordos Basin, coal-bearing mudstone from the second member of Shanxi Formation in Paleozoic, and main gas-producing shales in USA
参数 密西西比系Batnett页岩 泥盆系Ohio页岩 泥盆系Antrim页岩 泥盆系Newalbany页岩 白垩系Lewis页岩 长7段黑色页岩 长7段暗色泥岩 山2段煤系泥岩 深度/m 1950~2 550 600~1 500 180~720 180~1 470 900~1 800 1 200~1600 1 200~2 600 2 000~2 800 有效厚度/m 15~61 9~20 21~37 15~30 6~91 15~40 15~110 20~66 TOC含量/% 4.5 0~4.7 0.2~24 1~25 0.45~3.5 13.81 3.75 1.94 Ro/% 1.0~1.9 0.4~1.3 0.4~0.6 0.4~1.0 1.6~1.88 0.9~1.2 0.9~1.2 1.5~2.8 有机质类型 Ⅰ—Ⅱ Ⅰ—Ⅱ Ⅰ—Ⅱ Ⅰ—Ⅱ Ⅰ—Ⅱ Ⅰ—Ⅱ1 Ⅰ—Ⅱ1 Ⅲ型 含气量/(m3/t) 8.5~9.9 1.7~2.8 1.1~2.8 1.1~2.3 0.4~1.3 2.16 0.82 1.0 储量丰度/ (108 m3/km2) 3.28~4.37 0.55~1.09 0.66~1.64 0.77~1.09 0.87~1.09 0.97~1.94 0.60 0.95 表 8 鄂尔多斯盆地三叠系延长组长7段页岩气资源量计算结果
Table 8. Shale gas resource calculation results for Chang 7 member of Triassic Yanchang Formation, Ordos Basin
岩性 总体积/108 m3 岩石密度/(t/m3) 含气量/(m3/t) 页岩气资源量/1012 m3 页岩油资源量/108 t 暗色泥岩(>20 m) 9 494 2.47 0.82 1.92 53.22 黑色页岩(>20 m) 4 774 2.26 2.16 2.33 29.46 -
[1] 中能传媒能源安全新战略研究院. 中国能源大数据报告(2022)[R]. 北京: 中能传媒能源安全新战略研究院, 2022.China Energy Media Research Institute. China energy big data report (2022)[R]Beijing: China Energy Media Research Institute, 2022. [2] 梁涛, 常毓文, 许璐, 等. 北美非常规油气蓬勃发展十大动因及对区域油气供需的影响[J]. 石油学报, 2014, 35(5): 890-900.LIANG Tao, CHANG Yuwen, XU Lu, et al. Top ten causes of unconventional oil and gas resources boom in north America and its influence on regional supply and demand[J]. Acta Petrolei Sinica, 2014, 35(5): 890-900. [3] 贾爱林, 何东博, 位云生, 等. 未来十五年中国天然气发展趋势预测[J]. 天然气地球科学, 2021, 32(1): 17-27.JIA Ailin, HE Dongbo, WEI Yunsheng, et al. Predictions on natural gas development trend in China for the next fifteen years[J]. Natural Gas Geoscience, 2021, 32(1): 17-27. [4] 罗群, 高阳, 张泽元, 等. 中国与美国致密油形成条件对比研究[J]. 石油实验地质, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199LUO Qun, GAO Yang, ZHANG Zeyuan, et al. A comparative study of geological conditions of tight oils in China and USA[J]. Petroleum Geology & Experiment, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199 [5] 蒋恕, 李醇, 陈国辉, 等. 中美常压页岩气赋存状态及其对可动性与产量的影响: 以彭水和阿巴拉契亚为例[J]. 油气藏评价与开发, 2022, 12(3): 399-406.JIANG Shu, LI Chun, CHEN Guohui, et al. Occurrence of normally-pressured shale gas in China and the United States and their effects on mobility and production: a case study of southeast Sichuan Basin and Appalachia Basin[J]. Reservoir Evaluation and Development, 2022, 12(3): 399-406. [6] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001 [7] 张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46.ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Reservoir Evaluation and Development, 2022, 12(1): 29-46. [8] 郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412. doi: 10.11781/sysydz202303402GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology & Experiment, 2023, 45(3): 402-412. doi: 10.11781/sysydz202303402 [9] 崔英敏, 郭红霞, 陆建峰, 等. 非常规气井产量递减与EUR预测方法评述[J]. 特种油气藏, 2022, 29(6): 119-126. doi: 10.3969/j.issn.1006-6535.2022.06.015CUI Yingmin, GUO Hongxia, LU Jianfeng, et al. A Review of unconventional gas well production decline and EUR prediction methods[J]. Special Oil & Gas Reserviors, 2022, 29(6): 119-126. doi: 10.3969/j.issn.1006-6535.2022.06.015 [10] 刘春林, 孟令为, 刘可, 等. 基于结构方程的非常规有利区优选方法与体系研究[J]. 特种油气藏, 2023, 30(2): 65-70. doi: 10.3969/j.issn.1006-6535.2023.02.009LIU Chunlin, MENG Lingwei, LIU Ke, et al. Study on optimization method and system of unconventional favorable areas based on structural equation[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 65-70. doi: 10.3969/j.issn.1006-6535.2023.02.009 [11] 王明筏, 文虎, 倪楷, 等. 四川盆地北部大隆组页岩气地质条件及勘探潜力[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 13-23.WANG Mingfa, WEN Hu, NI Kai, et al. Geological conditions and exploration potential of shale gas in Dalong Formation in northern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 13-23. [12] 付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探, 2021, 26(3): 19-40.FU Jinhua, DONG Guodong, ZHOU Xinping, et al. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40. [13] YANG Hua, FU Suotang, WEI Xinshan, et al. Geology and exploration of oil and gas in the Ordos Basin[J]. Applied Geophysics, 2004, 1(2): 103-109. doi: 10.1007/s11770-004-0011-3 [14] 杜贵超, 杨兆林, 尹洪荣, 等. 鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J]. 油气地质与采收率, 2022, 29(6): 1-11.DU Guichao, YANG Zhaolin, YIN Hongrong, et al. Developmental characteristics of organic matter and its enrichment model in shale reservoirs of Chang 73 Member in Yanchang Formation of southeast Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 1-11. [15] 李浩. 鄂尔多斯盆地古生界气藏成藏模式及优势储层预测[J]. 特种油气藏, 2022, 29(2): 57-63. doi: 10.3969/j.issn.1006-6535.2022.02.008LI Hao. Accumulation pattern and favorable reservoir prediction of Paleozoic Gas Reservoirs in Ordos Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 57-63. doi: 10.3969/j.issn.1006-6535.2022.02.008 [16] 杨华, 张文正. 论鄂尔多斯盆地长7优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007YANG Hua, ZHANG Wenzheng. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007 [17] 刘显阳, 李士祥, 郭芪恒, 等. 鄂尔多斯盆地延长组长73亚段泥页岩层系岩石类型特征及勘探意义[J]. 天然气地球科学, 2021, 32(8): 1177-1189.LIU Xianyang, LI Shixiang, GUO Qiheng, et al. Characteristics of rock types and exploration significance of the shale strata in the Chang 73 sub-member of Yanchang Formation, ordos Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1177-1189. [18] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. [19] 刘航军. 鄂尔多斯盆地延长组高自然伽马储层成因及测井评价[D]. 西安: 西北大学, 2013.LIU Hangjun. The genesis and well logging evaluation of high natural gamma sandstone reservoir in Yanchang Formation in Ordos Basin[D]. Xi'an: Northwest University, 2013. [20] 郑奎, 杨晋玉, 胡晓雪, 等. 胡尖山—姬塬地区长7段油页岩定性定量评价及长9油藏勘探评价[J]. 长江大学学报(自然科学版), 2022, 19(5): 27-36. doi: 10.3969/j.issn.1673-1409.2022.05.004ZHENG Kui, YANG Jinyu, HU Xiaoxue, et al. Qualitative and quantitative evaluation of Chang 7 oil shale and exploration evaluation of Chang 9 reservoir in Hujianshan-Jiyuan area[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(5): 27-36. doi: 10.3969/j.issn.1673-1409.2022.05.004 [21] 曹尚, 李树同, 党海龙, 等. 鄂尔多斯盆地东南部长7段页岩孔隙特征及其控制因素[J]. 新疆石油地质, 2022, 43(1): 11-17.CAO Shang, LI Shutong, DANG Hailong, et al. Pore Characteristics and controlling factors of Chang 7 shale in southeastern Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 11-17. [22] 钟红利, 卓自敏, 张凤奇, 等. 鄂尔多斯盆地甘泉地区长7页岩油储层非均质性及其控油规律[J]. 特种油气藏, 2023, 30(4): 10-18. doi: 10.3969/j.issn.1006-6535.2023.04.002Zhong Hongli, Zhuo Zimin, Zhang Fengqi, et al. Heterogeneity of Chang 7 shale oil reservoir and its oil control law in Ganquan area, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 10-18. doi: 10.3969/j.issn.1006-6535.2023.04.002 [23] 杨莎莎, 黄旭日, 贾继生, 等. 黄陵地区延长组长6段深水砂岩储层特征分析[J]. 西南石油大学学报(自然科学版), 2022, 44(1): 53-65.YANG Shasha, HUANG Xuri, JIA Jisheng, et al. An analysis on the characteristics of deepwater sandstone reservior of Chang 6 member, Yanchang Formation in Huangling area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 53-65. [24] 陈孝红, 李海, 苗凤彬, 等. 中扬子古隆起周缘寒武系页岩气赋存方式与富集机理[J]. 华南地质, 2022, 38(3): 394-407.CHEN Xiaohong, LI Hai, MIAO Fengbin, et al. Occurrence model and enrichment mechanism of Cambrian shale gas around Paleo-uplift in the Mid-Yangtze region[J]. South China Geology, 2022, 38(3): 394-407. [25] 蒋恕, 李醇, 陈国辉, 等. 中美常压页岩气赋存状态及其对可动性与产量的影响: 以彭水和阿巴拉契亚为例[J]. 油气藏评价与开发, 2022, 12(3): 399-406.JIANG Shu, LI Chun, CHEN Guohui, et al. Occurrence of normally-pressured shale gas in China and the United States and their effects on mobility and production: a case study of southeast Sichuan Basin and Appalachia Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 399-406. [26] 杨钦, 苏思远, 李昂, 等. 孔隙类型对页岩气赋存状态的影响: 以川南长宁地区五峰组—龙马溪组页岩为例[J]. 中国矿业大学学报, 2022, 51(4): 704-717.YANG Qin, SU Siyuan, LI Ang, et al. Influence of pore type on the occurrence state of shale gas: taking Wufeng-Longmaxi formation shale in Changning area of southern Sichuan as an example[J]. Journal of China University of Mining & Technology, 2022, 51(4): 704-717. [27] 张晓明, 石万忠, 舒志国, 等. 涪陵地区页岩含气量计算模型及应用[J]. 地球科学, 2017, 42(7): 1157-1168.ZHANG Xiaoming, SHI Wanzhong, SHU Zhiguo, et al. Calculation model of shale gas content and its application in Fuling area[J]. Earth Science, 2017, 42(7): 1157-1168. [28] 宋涛涛, 毛小平. 页岩气资源评价中含气量计算方法初探[J]. 中国矿业, 2013, 22(1): 34-36. doi: 10.3969/j.issn.1004-4051.2013.01.009SONG Taotao, MAO Xiaoping. Discussion on gas content calculation method of shale gas resource evaluation[J]. China Mining Magazine, 2013, 22(1): 34-36. doi: 10.3969/j.issn.1004-4051.2013.01.009 [29] 罗安湘, 刘广林, 刘正鹏, 等. 鄂尔多斯盆地中生界断裂及对油藏的控制研究[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 43-54.LUO Anxiang, LIU Guanglin, LIU Zhengpeng, et al. Mesozoic faults and their control on oil reservoirs in Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 43-54. [30] 国家市场监督管理总局, 国家标准化管理委员会. 天然气的组成分析气相色谱法: GB/T 13610-2020[S]. 北京: 中国标准出版社, 2020.State Administration for Market Regulation, Standardization Administration. Analysis of natural gas composition-gas chromatography: GB/T 13610-2020[S]. Beijing: Standards Press of China, 2020. [31] 王香增, 郝进, 姜振学, 等. 鄂尔多斯盆地下寺湾地区长7段油溶相页岩气量影响因素及其分布特征[J]. 天然气地球科学, 2015, 26(4): 744-753.WANG Xiangzeng, HAO Jin, JIANG Zhenxue, et al. Influencing factors and distributions of the oil dissolved shale gas content of member Chang 7 shale in Xiasiwan area, Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(4): 744-753. [32] 何廷鹏, 栾进华, 胡科, 等. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景[J]. 岩矿测试, 2018, 37(1): 87-95.HE Yanpeng, LUAN Jinhua, HU Ke, et al. Organic geochemical characteristics of the shale from Y1 well in Chengkou area of northeastern Chongqing and exploration prospects[J]. Rock and Mineral Analysis, 2018, 37(1): 87-95. [33] 蒲泊伶, 王凤琴, 王克, 等. 延安地区长7段页岩气成藏富集条件及发育模式[J]. 中国地质, 2023, 50(5): 1285-1298.PU Boling, WANG Fengqin, WANG Ke, et al. The enrichment conditions and model of shale gas reservoir in the Chang 7 member of Mesozoic Yanchang Formation in Yan'an, Ordos Basin[J]. Geology in China, 2023, 50(5): 1285-1298. [34] 刚文哲, 高岗, 郝石生, 等. 论乙烷碳同位素在天然气成因类型研究中的应用[J]. 石油实验地质, 1997, 19(2): 164-167. doi: 10.11781/sysydz199702164GANG Wenzhe, GAO Gang, HAO Shisheng, et al. Carbon isotope of ethane applied in the analyses of genetic types of natural gas[J]. Petroleum Geology & Experiment, 1997, 19(2): 164-167. doi: 10.11781/sysydz199702164 [35] 付永强, 马发明, 曾立新, 等. 页岩气藏储层压裂实验评价关键技术[J]. 天然气工业, 2011, 31(4): 51-54. doi: 10.3787/j.issn.1000-0976.2011.04.012FU Yongqiang, MA Faming, ZENG Lixin, et al. Key techniques of experimental evaluation in the fracturing treatment for shale gas reservoirs[J]. Natural Gas Industry, 2011, 31(4): 51-54. doi: 10.3787/j.issn.1000-0976.2011.04.012 [36] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition. Denver, USA: Society of Petroleum Engineers, 2008. [37] 宋振响, 陆建林, 周卓明, 等. 常规油气资源评价方法研究进展与发展方向[J]. 中国石油勘探, 2017, 22(3): 21-31. doi: 10.3969/j.issn.1672-7703.2017.03.003SONG Zhenxiang, LU Jianlin, ZHOU Zhuoming, et al. Research progress and future development of assessment methods for conventional hydrocarbon resources[J]. China Petroleum Exploration, 2017, 22(3): 21-31. doi: 10.3969/j.issn.1672-7703.2017.03.003 [38] 王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探: 以延长直罗—下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197.WANG Xiangzeng, ZHANG Jinchuan, CAO Jinzhou, et al. A preliminary discussion on evaluation of continental shale gas resources: a case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang[J]. Earth Science Frontiers, 2012, 19(2): 192-197. [39] 张文正, 杨华, 杨伟伟, 等. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价[J]. 地球化学, 2015, 44(5): 505-515. doi: 10.3969/j.issn.0379-1726.2015.05.010ZHANG Wenzheng, YANG Hua, YANG Weiwei, et al. Assessment of geological characteristics of lacustrine shale oil reservoir in Chang7 Member of Yanchang Formation, Ordos Basin[J]. Geochimica, 2015, 44(5): 505-515. doi: 10.3969/j.issn.0379-1726.2015.05.010 [40] 张凤奇, 孙越, 刘思瑶, 等. 构造抬升区泥页岩脆性破裂泄压特征及对页岩油富集的影响: 以延安地区延长组长73亚段为例[J]. 石油实验地质, 2023, 45(5): 936-951. doi: 10.11781/sysydz202305936ZHANG Fengqi, SUN Yue, LIU Siyao, et al. Characteristics of pressure relief induced by shale brittle fracture in tectonic uplift area and its influence on shale oil enrichment: a case study of Chang 73 sub-member of Yanchang Formation in Yan'an area[J]. Petroleum Geology & Experiment, 2023, 45(5): 936-951. doi: 10.11781/sysydz202305936 [41] 岳宝林, 祝晓林, 刘斌, 等. 气顶边水油藏天然能量开发界面运移规律研究[J]. 天然气与石油, 2021, 39(5): 74-79. doi: 10.3969/j.issn.1006-5539.2021.05.011YUE Baolin, ZHU Xiaolin, LIU Bin, et al. Research on migration law of natural energy development interface in gas cap edge water narrow oil ring reservoir[J]. Natural Gas and Oil, 2021, 39(5): 74-79. doi: 10.3969/j.issn.1006-5539.2021.05.011 [42] 鹿克峰. 油气同采方式下气顶油藏原油侵入状况的判断与调整[J]. 中国海上油气, 2017, 29(5): 69-74.LU Kefeng. Judgment and adjustment of crude oil invasion for oil and gas commingled production in gas cap reservoir[J]. China Offshore Oil and Gas, 2017, 29(5): 69-74.