留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩储层压裂效果地质—工程影响因素评价

宿航 李瑞雪 邓虎成 秦源蔚 伏美燕 何建华 曾青高 宋林珂 张家维

宿航, 李瑞雪, 邓虎成, 秦源蔚, 伏美燕, 何建华, 曾青高, 宋林珂, 张家维. 致密砂岩储层压裂效果地质—工程影响因素评价[J]. 石油实验地质, 2024, 46(6): 1349-1361. doi: 10.11781/sysydz2024061349
引用本文: 宿航, 李瑞雪, 邓虎成, 秦源蔚, 伏美燕, 何建华, 曾青高, 宋林珂, 张家维. 致密砂岩储层压裂效果地质—工程影响因素评价[J]. 石油实验地质, 2024, 46(6): 1349-1361. doi: 10.11781/sysydz2024061349
SU Hang, LI Ruixue, DENG Hucheng, QIN Yuanwei, FU Meiyan, HE Jianhua, ZENG Qinggao, SONG Linke, ZHANG Jiawei. Comprehensive evaluation of geological and engineering factors affecting fracturing effectiveness in tight sandstone reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1349-1361. doi: 10.11781/sysydz2024061349
Citation: SU Hang, LI Ruixue, DENG Hucheng, QIN Yuanwei, FU Meiyan, HE Jianhua, ZENG Qinggao, SONG Linke, ZHANG Jiawei. Comprehensive evaluation of geological and engineering factors affecting fracturing effectiveness in tight sandstone reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1349-1361. doi: 10.11781/sysydz2024061349

致密砂岩储层压裂效果地质—工程影响因素评价

doi: 10.11781/sysydz2024061349
基金项目: 

国家自然科学基金面上项目 42072182

四川省杰出青年科技人才项目 2020JDJQ0058

详细信息
    作者简介:

    宿航(1998—), 男, 硕士生, 从事地应力状态精细表征及其对压裂改造效果影响研究。E-mail: suhang@stu.cdut.edu.cn

    通讯作者:

    李瑞雪(1994—), 女, 博士, 副教授, 从事地质力学分析、地应力场精细表征等研究。E-mail: liruixue19@cdut.edu.cn

  • 中图分类号: TE357.1

Comprehensive evaluation of geological and engineering factors affecting fracturing effectiveness in tight sandstone reservoirs

  • 摘要: 我国致密砂岩储层具有巨大的油气储量和开发潜力,水平井水力压裂改造技术是致密砂岩储层开发的关键增产措施。川中—川西过渡带J气田侏罗系沙溪庙组致密砂岩储层受其岩石力学性质及地质力学特征差异影响,相近压裂工艺下各井压裂改造效果差距较大。为提高压裂改造的有效性及针对性,研究了表征岩石力学性质的脆性指数及表征地质力学特征的最小水平主应力、水平两向主应力差3个地质因素对压裂效果的影响。以水平两向主应力差为分类条件,将研究区地质条件由好到差分为Ⅰ类和Ⅱ类;分析两类地质条件下各类工程因素对压裂效果的影响,并给出了不同地质条件下的工程参数优选范围。采用层次分析法和灰色关联法计算了上述地质及工程参数对压裂改造效果的影响权重,建立了压裂改造效果定量评价模型。基于所建模型与压裂改造效果的相关程度,优选层次分析法所建模型用于评价研究区压裂改造效果,并验证上述研究给出的工程参数建议范围的合理性及压裂改造效果综合评价模型的适用性。不同地质条件下水平井压裂工程参数建议范围存在较大差别,地质条件较好的水平井工程参数建议范围明显比地质条件较差的范围更大。优选层次分析法建立了用于评价研究区压裂改造效果的地质—工程综合评价模型。

     

  • 图  1  四川盆地J气田构造位置(a)及地层综合柱状图(b)

    据参考文献[18]修改。

    Figure  1.  Structural location (a) and comprehensive stratigraphic column (b) of J gas field in Sichuan Basin

    图  2  四川盆地J气田沙溪庙组脆性指数与压裂改造效果关系

    Figure  2.  Relationship between brittleness index and fracturing effectiveness in Shaximiao Formation of J gas field, Sichuan Basin

    图  3  四川盆地J气田沙溪庙组最小水平主应力(a)、水平两向主应力差(b)与压裂改造效果关系

    Figure  3.  Relationship between minimum horizontal principal stress (a), differences between two horizontal principal stresses (b), and fracturing effectiveness in Shaximiao Formation of J gas field, Sichuan Basin

    图  4  四川盆地J气田沙溪庙组不同地质条件下用液强度(a)、加砂强度(b)与压裂改造效果关系

    Figure  4.  Relationship between fluid injection intensity (a), sand addition intensity (b), and fracturing effectiveness under different geological conditions in Shaximiao Formation of J gas field, Sichuan Basin

    图  5  四川盆地J气田沙溪庙组Q3井第五段压裂施工曲线

    Figure  5.  Fracturing construction curves of the fifth section of well Q3 in Shaximiao Formation, J gas field, Sichuan Basin

    图  6  四川盆地J气田沙溪庙组不同地质条件下水平井水平段与最大水平主应力方向夹角—压裂改造效果的关系

    Figure  6.  Relationship between angle between horizontal section of horizontal wells and maximum horizontal principal stress and fracturing effectiveness under different geological conditions in Shaximiao Formation of J gas field, Sichuan Basin

    图  7  四川盆地J气田沙溪庙组不同地质条件下水平井簇间距与压裂改造效果的关系

    Figure  7.  Relationship between cluster spacing of horizontal wells and fracturing effectiveness under different geological conditions in Shaximiao Formation of J gas field, Sichuan Basin

    图  8  压裂改造效果研究层次结构

    Figure  8.  Hierarchical structure for fracturing effectiveness

    图  9  四川盆地J气田沙溪庙组各水平井压裂改造效果综合评价指数与压裂改造效果的相关性

    Figure  9.  Correlation between comprehensive evaluation index of fracturing effectiveness and actual fracturing reconstruction effectiveness for horizontal wells in Shaximiao Formation of J gas field, Sichuan Basin

    图  10  四川盆地J气田沙溪庙组各压裂段压裂改造效果综合评价指数与压裂改造效果关系

    Figure  10.  Relationship between comprehensive evaluation index and fracturing effectiveness for each fracturing interval in Shaximiao Formation of J gas field, Sichuan Basin

    图  11  四川盆地J气田沙溪庙组各压裂段地质—工程参数及压裂改造效果综合分析

    Figure  11.  Comprehensive analysis of geological and engineering parameters and fracturing effectiveness for each fracturing interval in Shaximiao Formation of J gas field, Sichuan Basin

    表  1  四川盆地J气田沙溪庙组不同地质条件下工程参数建议优选范围

    Table  1.   Suggested optimal ranges for engineering parameters under different geological conditions in Shaximiao Formation of J gas field, Sichuan Basin

    地质条件 用液强度/ (m3/m) 加砂强度/(t/m) 水平段与最大水平主应力方向夹角/(°) 簇间距/m
    Ⅰ类地质条件 >14.5 4.9~6.0 >60 11~15
    Ⅱ类地质条件 >16.0 5.0~6.0 >65 9~15
    下载: 导出CSV

    表  2  四川盆地J气田沙溪庙组压裂改造效果影响因素判断矩阵

    Table  2.   Judgement matrix of influencing factors on fracturing effectiveness in Shaximiao Formation of J gas field, Sichuan Basin

    研究层次 Ⅰ类地质条件 Ⅱ类地质条件
    准则层 ${A_1} = \begin{array}{*{20}{c}} {\begin{array}{*{20}{l}} {地质}&{工程} \end{array}} \\ {\left[ {\begin{array}{*{20}{l}} {1.0}&{0.5} \\ {2.0}&{1.0} \end{array}} \right]} \end{array}$ ${A_2} = \begin{array}{*{20}{c}} {\begin{array}{*{20}{l}} {地质}&{工程} \end{array}} \\ {\left[ {\begin{array}{*{20}{l}} {1.0}&{0.5} \\ {2.0}&{1.0} \end{array}} \right]} \end{array}$
    指标层 ${A_{11}} = \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\;{I_B}}&{\;\;{\sigma _h}}&{\;\;\Delta \sigma } \end{array}} \\ {\left[ {\begin{array}{*{20}{l}} {1.00}&{0.50}&{0.40} \\ {2.00}&{1.00}&{0.80} \\ {2.50}&{1.25}&{1.00} \end{array}} \right]} \end{array}$ ${A_{11}} = \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\;{I_B}}&{\;\;{\sigma _h}}&{\;\;\Delta \sigma } \end{array}} \\ {\left[ {\begin{array}{*{20}{l}} {1.00}&{0.67}&{0.50} \\ {1.50}&{1.00}&{0.75} \\ {2.00}&{1.33}&{1.00} \end{array}} \right]} \end{array}$
    指标层 ${A_{12}} = \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} L&{\;\;\;\;\;S}&{\;\;\;\;\;\theta }&{\;\;\;\;D} \end{array}} \\ {\left[ {\begin{array}{*{20}{c}} {1.00}&{1.50}&{1.67}&{2.00} \\ {0.67}&{1.00}&{1.11}&{1.33} \\ {0.60}&{0.90}&{1.00}&{1.20} \\ {0.50}&{0.75}&{0.83}&{1.00} \end{array}} \right]} \end{array}$ ${A_{12}} = \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} L&{\;\;\;\;\;S}&{\;\;\;\;\;\theta }&{\;\;\;\;D} \end{array}} \\ {\left[ {\begin{array}{*{20}{c}} {1.00}&{1.67}&{2.00}&{3.33} \\ {0.60}&{1.00}&{1.20}&{2.00} \\ {0.50}&{0.83}&{1.00}&{1.67} \\ {0.30}&{0.50}&{0.60}&{1.00} \end{array}} \right]} \end{array}$
    注:地质、工程分别为地质影响因素和工程影响因素;IB为脆性指数,σh为水平最小主应力,Δσ为水平两向应力差;L为用液强度,S为加砂强度,θ为水平段与最大水平主应力方向夹角,D为簇间距。
    下载: 导出CSV

    表  3  四川盆地J气田沙溪庙组层次分析法中指标层因素占准则层及目标层权重

    Table  3.   Weights of index layer factors to criterion layer and objective layer in analytic hierarchy process for Shaximiao Formation of J gas field, Sichuan Basin

    影响因素 准则层权重 目标层权重
    Ⅰ类地质条件 Ⅱ类地质条件 Ⅰ类地质条件 Ⅱ类地质条件
    脆性指数 0.1818 0.2226 0.0600 0.0734
    最小水平主应力 0.3636 0.3333 0.1200 0.1100
    水平两向差应力 0.4545 0.4440 0.1500 0.1465
    用液强度 0.3617 0.4106 0.2423 0.2751
    加砂强度 0.2408 0.2610 0.1613 0.1748
    水平段与最大主应力方向夹角 0.2169 0.2051 0.1453 0.1374
    簇间距 0.1805 0.1231 0.1209 0.0826
    下载: 导出CSV

    表  4  四川盆地J气田沙溪庙组灰色关联法中地质、工程影响因素与压裂改造效果关联度及权重

    Table  4.   Correlation and weights of geological and engineering influencing factors on fracturing effectiveness in Grey Relational Analysis for Shaximiao Formation of J gas field, Sichuan Basin

    影响因素 Ⅰ类地质条件 Ⅱ类地质条件
    关联度 权重 关联度 权重
    脆性指数 0.5501 0.1165 0.5943 0.1224
    最小水平主应力 0.6873 0.1455 0.6986 0.1439
    水平两向差应力 0.7002 0.1483 0.7053 0.1453
    用液强度 0.7315 0.1549 0.7779 0.1603
    加砂强度 0.7143 0.1513 0.7409 0.1527
    水平段与最大主应力方向夹角 0.6827 0.1446 0.7129 0.1469
    簇间距 0.6554 0.1388 0.6233 0.1284
    下载: 导出CSV
  • [1] 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184.

    ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
    [2] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
    [3] 赵宁, 司马立强, 刘志远, 等. 基于地层条件下力学试验的致密砂岩可压裂性评价[J]. 测井技术, 2022, 46(2): 127-134.

    ZHAO Ning, SIMA Liqiang, LIU Zhiyuan, et al. Fracturing evaluation of tight sandstone based on rock mechanical experiment under formation conditions[J]. Well Logging Technology, 2022, 46(2): 127-134.
    [4] 陈诚, 雷征东, 房茂军, 等. 致密砂岩储层可压性评价与极限参数压裂技术[J]. 科学技术与工程, 2022, 22(16): 6400-6407. doi: 10.3969/j.issn.1671-1815.2022.16.004

    CHEN Cheng, LEI Zhengdong, FANG Maojun, et al. Tight sandstone reservoir compressibility evaluation and limit parameter fracturing technology[J]. Science Technology and Engineering, 2022, 22(16): 6400-6407. doi: 10.3969/j.issn.1671-1815.2022.16.004
    [5] JI Guofa, LI Kuidong, ZHANG Gongshe, et al. An assessment method for shale fracability based on fractal theory and fracture toughness[J]. Engineering Fracture Mechanics, 2019, 211: 282-290. doi: 10.1016/j.engfracmech.2019.02.011
    [6] HE Rui, YANG Zhaozhong, LI Xiaogang, et al. A comprehensive approach for fracability evaluation in naturally fractured sandstone reservoirs based on analytical hierarchy process method[J]. Energy Science & Engineering, 2019, 7(2): 529-545.
    [7] 谢润成, 周文, 李良. 鄂尔多斯盆地大牛地上古生界气藏压裂效果分析[J]. 天然气工业, 2004, 24(12): 71-73. doi: 10.3321/j.issn:1000-0976.2004.12.023

    XIE Runcheng, ZHOU Wen, LI Liang. Postfracture response analysis of Upper Paleozoic gas reservoir in Daniudi field in E'erduosi Basin[J]. Natural Gas Industry, 2004, 24(12): 71-73. doi: 10.3321/j.issn:1000-0976.2004.12.023
    [8] 李文学, 马新仿, 王研. 水力压裂效果影响因素的多元线性回归分析[J]. 科学技术与工程, 2011, 11(29): 7245-7248.

    LI Wenxue, MA Xinfang, WANG Yan. Multivariate analysis on affecting factors for hydraulic fracturing[J]. Science Technology and Engineering, 2011, 11(29): 7245-7248.
    [9] 战永平, 付春丽, 段晓飞, 等. 基于BP网络分析大牛地气田山西组气井压裂效果影响因素[J]. 长江大学学报(自科版), 2017, 14(19): 85-89.

    ZHAN Yongping, FU Chunli, DUAN Xiaofei, et al. Research on influence factors of fracturing effect of gas wells in Shanxi Formation of Daniudi gas field based on BP network[J]. Journal of Yangtze University(Natural Science Edition), 2017, 14(19): 85-89.
    [10] 孔祥伟, 万雄, 郭照越, 等. 致密砂岩油藏体积压裂技术适应性评价及压裂参数优化[J]. 石油与天然气化工, 2023, 52(2): 81-86.

    KONG Xiangwei, WAN Xiong, GUO Zhaoyue, et al. Adaptive evaluation and optimization of volumetric fracturing parameters in tight sandstone reservoirs[J]. Chemical Engineering of Oil and Gas, 2023, 52(2): 81-86.
    [11] 牟媚, 邹剑, 张璐, 等. 致密气藏压裂效果影响因素分析[J]. 云南化工, 2023, 50(7): 131-133.

    MU Mei, ZOU Jian, ZHANG Lu, et al. Analysis on influencing factors of fracturing effect in tight gas reservoir[J]. Yunnan Chemical Technology, 2023, 50(7): 131-133.
    [12] 阳小平, 程林松, 孙福街, 等. 灰色关联分析法在油气藏措施优选中的应用[J]. 新疆石油地质, 2003, 24(4): 335-337.

    YANG Xiaoping, CHENG Linsong, SUN Fujie, et al. Application of grey correlation analysis to optimization of oilfield stimulation[J]. Xinjiang Petroleum Geology, 2003, 24(4): 335-337.
    [13] 王丹群, 李治平, 毛得雷. 基于神经网络模型的致密气藏分段压裂井产能预测[J]. 科学技术与工程, 2023, 23(1): 189-197.

    WANG Danqun, LI Zhiping, MAO Delei. Productivity prediction of staged fractured wells in tight gas reservoir based on neural network model[J]. Science Technology and Engineering, 2023, 23(1): 189-197.
    [14] 赵可英, 牟凯. 基于灰色关联度分析法和主成分分析法对泥页岩储层评价方法的探讨[J]. 地质与勘探, 2023, 59(2): 443-450.

    ZHAO Keying, MU Kai. Evaluation of shale reservoirs based on grey relation analysis and principal component analysis[J]. Geology and Exploration, 2023, 59(2): 443-450.
    [15] 赖富强, 罗涵, 覃栋优, 等. 基于层次分析法的页岩气储层可压裂性评价研究[J]. 特种油气藏, 2018, 25(3): 154-159.

    LAI Fuqiang, LUO Han, QIN Dongyou, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil and Gas Reservoirs, 2018, 25(3): 154-159.
    [16] 孙剑锋, 马超, 胡金树, 等. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价: 以浙江省云和县崇头镇为例[J]. 工程地质学报, 2023, 31(2): 538-551.

    SUN Jianfeng, MA Chao, HU Jinshu, et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: a case of Chongtou Town, Yunhe County, Zhejiang Province[J]. Journal of Engineering Geology, 2023, 31(2): 538-551.
    [17] 谌文武, 夏云云, 雷宏, 等. 基于灰色关联度和AHP层次分析法评价定风速下的土遗址劣化效应[J]. 兰州大学学报(自然科学版), 2021, 57(3): 311-317.

    CHEN Wenwu, XIA Yunyun, LEI Hong, et al. Evaluation of the degradation effects of earthen sites at constant wind speed based on gray correlation degree and analytic hierarchy process[J]. Journal of Lanzhou University(Natural Sciences), 2021, 57(3): 311-317.
    [18] 张本健, 潘珂, 吴长江, 等. 四川盆地金秋气田侏罗系沙溪庙组多期砂组天然气复合成藏机理及模式[J]. 天然气工业, 2022, 42(1): 51-61.

    ZHANG Benjian, PAN Ke, WU Changjiang, et al. Compound gas accumulation mechanism and model of Jurassic Shaximiao Formation multi-stage sandstone formations in Jinqiu gas field of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 51-61.
    [19] 王会强, 邓清源, 于鹏, 等. 金秋气田变系数一点法产能公式建立与应用[J]. 油气井测试, 2022, 31(6): 6-10.

    WANG Huiqiang, DENG Qingyuan, YU Peng, et al. Establishment and application of productivity formula of variable coefficient one point method in Jinqiu gas field[J]. Well Testing, 2022, 31(6): 6-10.
    [20] 范宇. 四川盆地沙溪庙组河道致密砂岩开发工程关键技术进展及发展方向[J]. 钻采工艺, 2022, 45(6): 48-52.

    FAN Yu. Progress and development direction for key well engineering technology in tight sandstone in Shaximiao Famation, Sichuan Basin[J]. Drilling & Production Technology, 2022, 45(6): 48-52.
    [21] 郑有成, 韩旭, 曾冀, 等. 川中地区秋林区块沙溪庙组致密砂岩气藏储层高强度体积压裂之路[J]. 天然气工业, 2021, 41(12): 92-99.

    ZHENG Youcheng, HAN Xu, ZENG Ji, et al. Practice of high-intensity volume fracturing in the Shaximiao Formation tight sandstone gas reservoirs of the Qiulin block, central Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2): 92-99.
    [22] 西南油气田公司升级致密气储层改造利器, 致密气再上新台阶[J]. 钻采工艺, 2022, 45(4): 140.

    Southwest Oil & Gas Field Company upgraded tight gas reservoir transformation weapon, tight gas to a new level[J]. Drilling & Production Technology, 2022, 45(4): 140.
    [23] 史璨, 林伯韬, 谢勃勃, 等. 基于双甜点的页岩储层可压性评价方法[J]. 深圳大学学报(理工版), 2024, 41(2): 183-191.

    SHI Can, LIN Botao, XIE Bobo, et al. Evaluation method of shale reservoir fracability based on double sweet spots[J]. Journal of Shenzhen University (Science and Engineering), 2024, 41(2): 183-191.
    [24] 窦亮彬, 杨浩杰, XIAO Yingjian, 等. 页岩储层脆性评价分析及可压裂性定量评价新方法研究[J]. 地球物理学进展, 2021, 36(2): 576-584.

    DOU Liangbin, YANG Haojie, XIAO Yingjian, et al. Probability study of formation brittleness and new quantitative evaluation of fracability for shale reservoirs[J]. Progress in Geophysics, 2021, 36(2): 576-584.
    [25] 任岩, 曹宏, 姚逢昌, 等. 吉木萨尔致密油储层脆性及可压裂性预测[J]. 石油地球物理勘探, 2018, 53(3): 511-519.

    REN Yan, CAO Hong, YAO Fengchang, et al. Brittleness and fracability prediction for tight oil reservoir in Jimsar Sag, Junggar Basin[J]. Oil Geophysical Prospecting, 2018, 53(3): 511-519.
    [26] BRUNER K R, SMOSNA R A. A comparative study of the Mississippian Barnett shale, Fort Worth Basin, and Devonian Marcellus shale, Appalachian Basin[M]. Washington: United States Department of Energy, 2011.
    [27] 唐鹏飞. 松北致密气藏砂砾岩储层脆性特征实验研究[J]. 油气地质与采收率, 2019, 26(6): 46-52.

    TANG Pengfei. Experimental study on brittleness of glutenite formation in tight gas reservoir of Songbei area[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 46-52.
    [28] 张全胜, 李明, 张子麟, 等. 胜利油田致密油储层体积压裂技术及应用[J]. 中国石油勘探, 2019, 24(2): 233-240.

    ZHANG Quansheng, LI Ming, ZHANG Zilin, et al. Application of volume fracturing technology in tight oil reservoirs of Shengli oilfield[J]. China Petroleum Exploration, 2019, 24(2): 233-240.
    [29] 马寅生. 地应力在油气地质研究中的作用、意义和研究现状[J]. 地质力学学报, 1997, 3(2): 41-46.

    MA Yinsheng. The role and significance of crustal stress in petroleum geology and its present situation[J]. Journal of Geomechanics, 1997, 3(2): 41-46.
    [30] 严成增, 郑宏, 孙冠华, 等. 基于FDEM-Flow研究地应力对水力压裂的影响[J]. 岩土力学, 2016, 37(1): 237-246.

    YAN Chengzeng, ZHENG Hong, SUN Guanhua, et al. Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow[J]. Rock and Soil Mechanics, 2016, 37(1): 237-246.
    [31] 王珂, 韩伟, 王刚, 等. 地应力对水力压裂效果的影响[J]. 煤炭技术, 2017, 36(12): 130-132.

    WANG Ke, HAN Wei, WANG Gang, et al. Effect of in-situ stress to hydraulic fracturing[J]. Coal Technology, 2017, 36(12): 130-132.
    [32] 孟召平, 王宇恒, 张昆, 等. 沁水盆地南部煤层水力压裂裂缝及地应力方向分析[J]. 煤炭科学技术, 2019, 47(10): 216-222.

    MENG Zhaoping, WANG Yuheng, ZHANG Kun, et al. Analysis of hydraulic fracturing cracks for coal reservoirs and in-situ stress direction in southern Qinshui Basin[J]. Coal Science and Technology, 2019, 47(10): 216-222.
    [33] 张美玲, 董传雷, 蔺建华. 地应力分层技术在压裂设计优化中的应用[J]. 地质力学学报, 2017, 23(3): 467-474.

    ZHANG Meiling, DONG Chuanlei, LIN Jianhua. The application of geostress layering technology in fracture design optimization[J]. Journal of Geomechanics, 2017, 23(3): 467-474.
    [34] 陈勉, 周健, 金衍, 等. 随机裂缝性储层压裂特征实验研究[J]. 石油学报, 2008, 29(3): 431-434.

    CHEN Mian, ZHOU Jian, JIN Yan, et al. Experimental study on fracturing features in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2008, 29(3): 431-434.
    [35] 时贤, 葛晓鑫, 张燕明, 等. 致密白云岩储层加砂压裂裂缝导流能力实验研究[J]. 油气地质与采收率, 2023, 30(4): 167-172.

    SHI Xian, GE Xiaoxin, ZHANG Yanming, et al. Experimental study of propped fracture conductivity in tight dolomite reservoir[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 167-172.
    [36] 郭建成, 林伯韬, 向建华, 等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报, 2019, 4(3): 273-287.

    GUO Jiancheng, LIN Botao, XIANG Jianhua, et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan Basin after fracturing[J]. Petroleum Science Bulletin, 2019, 4(3): 273-287.
    [37] 曾凡辉, 郭建春, 徐严波, 等. 压裂水平井产能影响因素[J]. 石油勘探与开发, 2007, 34(4): 474-477.

    ZENG Fanhui, GUO Jianchun, XU Yanbo, et al. Factors affecting production capacity of fractured horizontal wells[J]. Petroleum Exploration and Development, 2007, 34(4): 474-477.
    [38] 沈骋, 吴建发, 付永强, 等. 页岩气井长水平段压裂一体化动态评估: 以长宁国家级页岩气示范区为例[J]. 天然气工业, 2022, 42(2): 123-132.

    SHEN Cheng, WU Jianfa, FU Yongqiang, et al. Integrated dynamic evaluation of long lateral fracturing in shale gas wells: a case study on the Changning national shale gas demonstration area[J]. Natural Gas Industry, 2022, 42(2): 123-132.
    [39] 刘欢, 尹俊禄, 王博涛. 水平井体积压裂簇间距优化方法[J]. 天然气勘探与开发, 2017, 40(2): 63-68.

    LIU Huan, YIN Junlu, WANG Botao. Optimization of cluster spacing in horizontal well volume fracturing[J]. Natural Gas Exploration and Development, 2017, 40(2): 63-68.
    [40] 虞晓芬, 傅玳. 多指标综合评价方法综述[J]. 统计与决策, 2004(11): 119-121.

    YU Xiaofen, FU Dai. Review of multi-index comprehensive evaluation methods[J]. Statistics and Decision, 2004(11): 119-121.
    [41] 姚泽清, 张洛嘉, 熊安邦, 等. 基于层次分析的主成分分析法及其应用[J]. 数学的实践与认识, 2016, 46(18): 176-183.

    YAO Zeqing, ZHANG Luojia, XIONG Anbang, et al. The analysis and application of the principal component analysis based on analytic hierarchy process[J]. Mathematics in Practice and Theory, 2016, 46(18): 176-183.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  7
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-14
  • 修回日期:  2024-10-22
  • 刊出日期:  2024-11-28

目录

    /

    返回文章
    返回