LU Hong, SUN Yong-ge, PENG Ping-an. UNUSUAL DISTRIBUTION OF STABLE CARBON ISOTOPE COMPOSITIONS FOR N-ALKANES OF ORDOVICIAN AND TRIASSIC CRUDE OILS FROM LUNNAN OILFIELD, TARIM BASIN, NW CHINA:PALEOENVIRONMENTAL IMPLICATIONS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2003, 25(5): 481-486. doi: 10.11781/sysydz200305481
Citation: LU Hong, SUN Yong-ge, PENG Ping-an. UNUSUAL DISTRIBUTION OF STABLE CARBON ISOTOPE COMPOSITIONS FOR N-ALKANES OF ORDOVICIAN AND TRIASSIC CRUDE OILS FROM LUNNAN OILFIELD, TARIM BASIN, NW CHINA:PALEOENVIRONMENTAL IMPLICATIONS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2003, 25(5): 481-486. doi: 10.11781/sysydz200305481

UNUSUAL DISTRIBUTION OF STABLE CARBON ISOTOPE COMPOSITIONS FOR N-ALKANES OF ORDOVICIAN AND TRIASSIC CRUDE OILS FROM LUNNAN OILFIELD, TARIM BASIN, NW CHINA:PALEOENVIRONMENTAL IMPLICATIONS

doi: 10.11781/sysydz200305481
  • Received Date: 2002-10-31
  • Rev Recd Date: 2003-06-29
  • Publish Date: 2003-09-25
  • Compound specific carbon isotope analysis was conducted for crude oils collected from a drilling well and the entire oilfield at Lunnan, Tarim Basin, NW China, and the results demonstrated that there was an unusual distribution of δ13C showing that carbon isotope was enriched in Ordovician oils and depleted in Upper Triassic oils.This unusual distribution is consistent with the distribution and evolution of carbon isotope of crude oils from all over the world in geological history, and cannot be explained by simply utilizing conventional models based on the differences in organic facies or sources, maturity, depositional environment, or migration fractionation, etc..in consideration of the great span in geologic times-cale between Ordovician and Triassic periods.It is illustrated from a survey of geochemical literature that the unusual distribution of stable carbon isotope of crude oils was associated with the global paleoenviron-mental changes such as in atmospheric CO2 and algae growth rates, etc., and was indeed resulted from the combination of the positive excursion of δ13C values in Ordovician period and the negative excursion in Triassic period.Crude oils, as a product of sedimentation and a kind of fossil fuels, recorded the paleoenvir-onmental and paleoclimatical changes in geological history, their stable carbon isotope is also controlled by these changes.

     

  • loading
  • [1]
    Matthews D E, Hayes J M, Isotope ratio monitoring gas chromatography mass spectrometry[J]. Analytical Chemistry,1978,50:1465-1473.
    [2]
    BjorΦy M, Hall P B, Hustad E, J A Williams. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Org Geochem, 1992, 19: 89-105.
    [3]
    BjorΦy M, Hall P B, Moe R P. Variation in the isotopic composition of single components in the C4-C20 fraction of oils and condensates[J]. Org Geochem, 1994, 21: 761-776.
    [4]
    Clayton C J M BjorΦy. Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils[J]. Organic Geochemistry, 1994, 21: 737-750.
    [5]
    Boreham C J, Summons R E, Roksandic Z, Dowling L M, Hutton A C, Chemical, molecular and isotopic differentiation of organic facies in the Tertiary lacustrine Duaringa oil shale deposit, Queensland, Australia[J]. Org Geochem, 1994, 21: 685-712.
    [6]
    Rooney M A, Vuletich A K, Griffith C E. Compound-specific isotope analysis as a tool for characterizing mixed oils: an example from the West of Shetlands area[J]. Org Geochem, 1998, 29: 241-254.
    [7]
    黄第藩, 赵孟军, 张水昌. 塔里木盆地满加尔油气系统下古生界油源油中蜡质烃来源的成因分析[J]. 沉积学报[增刊],1997,5(2):6-13.
    [8]
    梁狄刚, 张水昌, 王飞宇, 等. 塔里木盆地生油岩与油源研究[R]. 国家"九五"重点科技攻关项目<塔里木盆地石油天然气勘探>成果报告. 1998.
    [9]
    BjorΦy M, Hall K, Gillyon P, J Jumeau. Carbon isotope variations in n-alkanes and isoprenoids in whole oils[J]. Chemical Geology, 1977, 93: 13-20.
    [10]
    Stahl W J. Carbon and Nitrogen isotopes in hydrocarbon research and exploration[J]. Chemical Geology, 1977, 20:121-149.
    [11]
    Clayton C J, BjorΦy M. Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils[J]. Org Geochem, 1994, 21: 737-750.
    [12]
    Pancost R D, Telnas N, Sinninghe Damste J S. Carbon isotopic composition of an isoprenoids-rich oil and its potential source rock[J]. Org Geochem, 2001, 32: 87-103.
    [13]
    Monson K D, Hayes J M. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes[J]. Geochim et Cosmochim Acta, 1982, 46: 139-149.
    [14]
    Hayes J M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence[J]. Marine Geology, 1993, 113: 111-125.
    [15]
    Collister J W, Lichtfouse E, Hieshima G, Hayes J M. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado)[J]. Org Geochem, 1994, 21: 645-659.
    [16]
    Andrusevich A E, Engel M H, Zumberge J E, Brothers L A. Secular, episodic changes in stable carbon isotope composition of crude oils[J]. Chemical Geology, 1998, 152: 59-72.
    [17]
    Berner R A. A model for atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 1991, 291: 339-376.
    [18]
    Magaritz M, Bar R, Baud A, et al. The carbon-isotope shift at the Permian-Trassic boundary in the southern Alps is gradual[J]. Nature, 1988, 331: 337-339.
    [19]
    Holser W T, Schonlanb H P, Attrep Jr M, et al. A unique geochemical record at the Permian-Trassic boundary[J]. Nature, 1989, 337: 39-44.
    [20]
    Wang K, Geldsetzer H H J, Krouse H R et al. Permian-Trassic extinction: Organic δ13C evidence from bBritish Columbia, Canada[J]. Geology, 22: 580-584.
    [21]
    李玉成. 华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应[J]. 沉积学报,1998, 16(3): 52-57.
    [22]
    王成源. 华南二叠-三叠系的事件地层与生物地层界线[J]. 地层学杂志,1994, 18(2): 110-118.
    [23]
    王万春,李玉成. 浙江煤山长兴阶有机碳δ13C层序分布特征及古气候意义[J]. 地质论评,1999, 45(4):368-374.
    [24]
    王大锐,王新平,孙晓婷. 广西西北部二叠系一三叠系界线碳、氧同位素组成异常及其意义[J]. 地质论评,2001, 47(3):225-228.
    [25]
    Holser W T, Magaritz M. Events near the Permian-Triassic boundary[J]. Modern Geology, 1987, 11: 155-180.
    [26]
    Bowring S A, Erwin D H, Jin Y G, et al.U/Ph zircon geochronology and Tempo of the end-Permian mass extinction[J]. Science, 1988, 280(15):1039-1045.
    [27]
    Erwin D H. The great Paleozoic Crisis: Life and Death in the Permian[M]. Columbia Univ Press, New York. 1993.
    [28]
    Dean W E, Arthur M A, Cloypool G E. Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic or environmental signal?[J]. Marine Geology, 1986, 70: 119-157.
    [29]
    黄思静. 上扬子二叠系-三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件[J]. 地球化学,1994, 23(1): 60-68.
    [30]
    Reed J D, Illich H A, Horsfield B. Biochemical evolutionary significance of Ordovician oils and their sources[J]. Org Geochem, 1986, 10: 347-358.
    [31]
    Hoffmann C F, Foster C B, Powell T G, Summons R E. Hydrocarbon biomarkers from Ordovician sediments and the fossil algae Gloeocapsomorpha prisca Zalessky 1917[J]. Geochim et Cosmochim Acta, 1987, 51: 2681-2797.
    [32]
    Jacobson S R, Hatch J R. Teerman S C, Askin G A. Middle Ordovician organic matter assemblages and their effect on Ordovician-derived oils[J]. AAPG. Bulletin, 1988, 72: 1090-1100.
    [33]
    Flower M F. The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of late Ordovician age from Canada[A]. Schidlowski M, Golubic S, Kimberley M M, McKirdy D D, Trudinger P A. Early Organic Evolution: Implication for Mineral and Energy Resources[C]. Springer Berlin, 1992. 336-356.
    [34]
    Zhang Shuichang, A D Hanson, et al. Paleozoic oil-source rock correlations in the Tarim Basin, NW China[J]. Organic Geochemistry, 2000, 31: 273-286.
    [35]
    Hatch J R, Jacobson S R, Witzke B J, Risatti J B, Anders D E, Watney W L, et al. Possible Late Middle Ordovician organic carbon isotope excursion: Evidence from Ordovician oils and hydrocarbon source rocks, Mid-Continent and east-central United States[J]. AAPG Bulletin, 1987, 71: 1342-1354.
    [36]
    Ludvigson G A, Jacobson S R, Witzke B J, Gonzalez L A. Carbonate component chemostratigraphy and depositional history of the Ordovician Decorah formation, Upper Mississippi Valley[A]. Witzke B, et al. Paleozoic sequence stratigraphy: Views from the North American craton[C]. Geological Society of America Special Paper 306, 1996. 67-86.
    [37]
    Patzkowsky M E, Slupik L M, Arthur M A, et al. Late Middle Ordovician environmental change and extinction: Harbinger of the Late Ordovician or continuation of Cambrian patterns?[J]. Geology, 1997, 25: 911-914.
    [38]
    Pancost R D, Freeman K H, Patzkowsky M E. Organic-matter source variation and the expression of a late Middle Ordovician carbon isotope excursion[J]. Geology, 1999, 27: 1015-1018.
    [39]
    Foster C B, Wicander R, Reed J D. Gloeocapsomorpha prisca Zalessky,1917: a new study, Part I: Taxonomy, geochemistry, and paleoecology[J]. Geobios,1989, 22: 735-759.
    [40]
    Sakata S, Hayes J M, McTaggart A R, et al. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: Relevance for interpretation of biomarker records[J]. Geochimica et Cosmochimica Acta, 1997, 61: 5379-5389.
    [41]
    Jacobson S R, Finney S C, Hatch J R, Ludvigson G A. Gloeocapsomorpha prisca-driven organic carbon isotope excursion, late Middle Ordovician (Rocklandian), North America mid-continent: New data from Nevada and Iowa[A]. Cooper J, et al. Ordovician Odyssey: Short papers for the Seventh International Symposium on the Ordovician System: Fullerton, California, Pacific Section, Society for Sedimentary Geology (SEPM)[C]. 1995. 299-302.
    [42]
    Goericke R, Fry B. Variations of marine plankton δ13C with latitude, temperature and dissolved CO2 in the world ocean[J]. Global Biogeochemical Cycles, 1994, 8: 85-90.
    [43]
    Laws E A, Popp B N, Bidigare R R, et al. Dependence of phytoplankton carbon isotopic compositions on growth rate and CO2(aq): Theoretical considerations and experimental results[J]. Geochim et Cosmochim Acta, 1995, 59: 1131-1138.
    [44]
    Popp B N, Laws E A, Biigare R R, et al. Effect of phytoplankton cell geometry on carbon isotope fractionation[J]. Geochim et Cosmochim Acta, 1998, 62: 29-77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (564) PDF downloads(481) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return