Qu Xiyu, Liu Li, Meng Qi'an, Yu Miao, Zhang Ge, Wu Wenbo. Reformation effect of atmospheric water on volcanic clastic rocks:a case study in Tamtsag Basin, Mongolia[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(3): 285-290. doi: 10.11781/sysydz201203285
Citation: Qu Xiyu, Liu Li, Meng Qi'an, Yu Miao, Zhang Ge, Wu Wenbo. Reformation effect of atmospheric water on volcanic clastic rocks:a case study in Tamtsag Basin, Mongolia[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(3): 285-290. doi: 10.11781/sysydz201203285

Reformation effect of atmospheric water on volcanic clastic rocks:a case study in Tamtsag Basin, Mongolia

doi: 10.11781/sysydz201203285
  • Received Date: 2011-10-27
  • Rev Recd Date: 2012-03-22
  • Publish Date: 2012-05-28
  • The volcanic clastic rocks from the Tamtsag Basin were studied. The experiments of atmospheric water and volcanic clastic rock reaction were conducted under different temperatures. It has been concluded that the soluble minerals in volcanic clastic rocks, such as feldspar and calcite, can be dissolved by atmospheric water, and the dissolution intensity will be enhanced with the increasing of temperature. Tuff in volcanic clastic rocks could be dissolved easily and is the main dissolution mineral. The researches of reservoir properties in the Southern Tamtsag Sag showed that within 30 m beneath the unconformity surface of the Tongbomiao Formation, the physical properties of reservoir were improved obviously by the eluviations of atmospheric water. Porosities increased by 5%-14% and the secondary porosities accounted for 88.48%-95.00%. There was no effect away from the scope of 80 m. The eluviations of atmospheric water play the main contribution to the secondary porosity formed in the Tongbomiao Formation of the Southern Tamtsag Sag, and the lowest limit is 30 to 80 m below unconformity surface.

     

  • loading
  • [1]
    董林森,刘立,张革,等.火山碎屑岩对CO2的矿物捕获能力[J].沉积学报,2010,28(3):572-578.
    [2]
    董林森,刘立,曲希玉,等.CO2矿物捕获能力的研究进展[J].地球科学进展,2010,25(9):941-949.
    [3]
    谢芳贵,谢家莹.浙江寿昌地区中生代火山灰流凝灰岩中长石的特征及其成因信息[J].中国地质科学院南京地质矿产研究所所刊, 1985,6(4):64-77.
    [4]
    木士春.凝灰岩的物理化学性质及其开发利用[J].中国矿业,2000,9(3):17-20.
    [5]
    万大学.贵州盘县羊槛地区安尼锡克中期凝灰岩的发现及其意义[J].贵州地质,2002,19(2):77-81.
    [6]
    Di Figlia M G,Bellanca A,Neri R,et al.Chemical weathering of volcanic rocks at the island of Pantelleria, Italy:Information from soil profile and soil solution investigations[J].Chemical Geology,2007,246(1/2):1-18.
    [7]
    Pettijohn F J,Potter P E,Siever R,et al.Sand and Sandstone[M].New York:Springer-Verlag,1987:35-48.
    [8]
    王建伟,鲍志东,陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响:以鄂尔多斯盆地西北部二叠系为例[J].地质科学,2005,40(3):429-438.
    [9]
    张凡芹,王伟锋,王建伟,等.苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J].吉林大学学报(地球科学版),2006,36(3):365-369.
    [10]
    曹瑞成,曲希玉,文全,等.海拉尔盆地贝尔凹陷储层物性特征及控制因素[J].吉林大学学报(地球科学版),2009,39(1):23-30.
    [11]
    柴合范,向哲涛,张美荣.大气降水酸碱性成因分析[J].河南科学,2001,19(1):293-295.
    [12]
    李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质,2005,26(2):220-223.
    [13]
    黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17.
    [14]
    杨俊杰,黄月明,张文正,等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发,1995,22(4):82-86.
    [15]
    朱焕来,曲希玉,刘立,等.CO2流体—长石相互作用实验研究[J].吉林大学学报(地球科学版),2011,41(3):697-706.
    [16]
    Giles M R.Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J].Marine Petrol Geol,1987,4 (2):188-204.
    [17]
    Hayes M J,Boles J R.Volumetric relations between dissolved plagioclase and kaolinite in sandstones:implications for aluminum mass transfer in the San Joaquin basin,California[J].Special Publication Society of Economic Paleontologists and Mineralogists,1992,47:111-123.
    [18]
    黄思静,武文慧,刘浩,等.大气水在碎屑岩次生孔隙形成中的作用:以鄂尔多斯盆地三叠系延长组为例[J].地球科学:中国地质大学学报,2003,28(4):419-424.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3843) PDF downloads(1616) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return