Xue Luo, Xu Sihuang, Yuan Caiping, Liu Xiaoxia, Li Songfeng. Evolution characteristics of methane stable carbon isotope in thermal simulation experiment:Discussion of δ13C1-Ro relationship under experimental and natural conditions[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(6): 617-622. doi: 10.11781/sysydz201206617
Citation: Xue Luo, Xu Sihuang, Yuan Caiping, Liu Xiaoxia, Li Songfeng. Evolution characteristics of methane stable carbon isotope in thermal simulation experiment:Discussion of δ13C1-Ro relationship under experimental and natural conditions[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(6): 617-622. doi: 10.11781/sysydz201206617

Evolution characteristics of methane stable carbon isotope in thermal simulation experiment:Discussion of δ13C1-Ro relationship under experimental and natural conditions

doi: 10.11781/sysydz201206617
  • Received Date: 2012-06-11
  • Rev Recd Date: 2012-09-25
  • Publish Date: 2012-11-28
  • By means of thermal simulation experiment,5 mudstone samples from Palaeogene of the Zhu Ⅰ Depre-ssion have been tested.The studies of methane stable carbon isotope have shown that when Ro is below 1.2%-1.3%,methane stable carbon isotope decreases as Ro increases.When Ro is over 1.2%-1.3%,methane stable carbon isotope increases as Ro increases.The changing principle may be explained by the differences of activation energy between 13C methane(heavy methane)and 12C methane(light methane).Under experimental and natural conditions,the relationship between methane stable carbon isotope and Ro are different,which might be the results of "effects after hydrocarbon generation".Due to the effects,massive gas migration leads to the weaken-ing of carbon isotope fractionation.The studies may guide gas field exploration.Heavy methane carbon isotope indicates high-mature gas source rocks,large-scale migration and good prospects for gas exploration.

     

  • loading
  • [1]
    Rohrback B G,Peters K E,Kaplan I R.Geochemistry of artificially heated humic and sapropelic sediments II:oil and gas generation[J].AAPG Bulletin,1984,68(8):961-970.
    [2]
    陈安定,张文正,徐永昌.沉积岩成烃热模拟实验产物的同位素特征及应用[J].中国科学:B辑化学,1993,23(2):209-217.
    [3]
    Du Jianguo,Jin Zhijun,Xie Hongsen,et al.Stable carbon isotope compositions of gaseous hydrocarbons produced from high pre-ssure and high temperature pyrolysis of lignite[J].Organic Geochemistry,2003,34(1):97-104.
    [4]
    Tocque E,Behar F,Budzinski H.Carbon isotopic balance of kerogen pyrolysis effluents in a closed system[J].Organic Geoche-mistry,2005,36(6):893-905.
    [5]
    Hill R J,Tang Y,Kaplan I.Insight into cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
    [6]
    帅燕华,邹艳荣,彭平安.天然气甲烷碳同位素动力学模型与地质应用新进展[J].地球科学进展,2003,18(3):405-411.
    [7]
    Galimov E M.同位素有机地球化学[M].宫色,李剑,胡国艺,译.北京:石油工业出版社,2007:30-31.
    [8]
    卢双舫,李吉军,薛海涛,等.碳同位素分馏模型比较研究[J].天然气工业,2006,26(7):1-4.
    [9]
    承秋泉,范明,黄继文,等.塔里木盆地库车坳陷烃源岩热模拟实验中甲烷碳同位素的二阶分馏[J].石油实验地质,2009,31(1):101-104.
    [10]
    李景坤,方伟,曾花森,等.徐家围子断陷烷烃气碳同位素反序机制[J].石油学报,2011,32(1):54-61.
    [11]
    王杰,刘文汇,腾格尔,等.南方海相层系不同类型烃源(岩)生烃模拟实验及其产物同位素演化规律[J].天然气地球科学,2011,22(4):684-691.
    [12]
    Zhang Haizu,Geng Ansong,Xiong Yongqiang,et al.Closed-system programmed-temperature pyrolysis on n-octadecane:implications for the conversion of oil to gas[J].Geochemical Journal,2008,42(5):403-412.
    [13]
    Lorant F,Prinzhofer A,Behar F,et al.Carbon isotopic and mole-cular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J].Chemical Geology,1998,147(3-4):249-264.
    [14]
    Cramer B,Faber E,Gerling P,et al.Reaction kinetics of stable carbon isotopes in natural gas-insights from dry,open system pyrolysis experiments[J].Energy & Fuels,2001,15(3):517-532.
    [15]
    Tang Y,Perry J K,Jenden P D,et al.Mathematical modeling of stable carbon isotope ratios in nature gases[J].Geochimica et Cosmochimica Acta,2000,64(15):2673-2687.
    [16]
    Schoell M.Genetic characterization of natural gases[J].AAPG Bulletin,1983,67(12):2225-2238.
    [17]
    Stahl W J.Carbon and nitrogen isotopes in hydrocarbon research and exploration[J].Chemical Geology,1977,20(2):121-149.
    [18]
    戴金星.各类烷烃气的鉴别[J].中国科学:B辑化学,1992(2):185-193.
    [19]
    沈平,申歧祥,王先彬,等.气态烃同位素组成特征及煤型气判识[J].中国科学:B辑化学,1987(6):647-656.
    [20]
    帅燕华.天然气组分及碳同位素动力学研究与地质应用.广州:中国科学院研究生院广州地球化学研究所,2004.
    [21]
    刘文汇,陈孟晋,关平,等.天然气成烃、成藏三元地球化学示踪体系及实践[M].北京:科学出版社,2009:14-15,200.
    [22]
    卢双舫,付晓泰,刘晓燕,等.油成气的动力学模型及其标定[J].天然气工业,1996,16(6):6-9.
    [23]
    Cramer B,Kross B M,Littke R.Modelling isotope fractionation during primary cracking of natural gas: A reaction kinetic approach[J].Chemical Geology,1998,149(3-4):235-250.
    [24]
    Gaschnitz R,Kross B M,Gerling P,et al.On-line pyrolysis-GC-IRMS:isotope fractionation of thermally generated gases from coals[J].Fuel,2001,80(15):2139-2153.
    [25]
    徐永昌,刘文汇,沈平,等.辽河盆地天然气的形成与演化[M].北京:科学出版社,1993:130-133.
    [26]
    史基安,孙秀建,王金鹏,等.天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J].石油实验地质,2005,27(3):293-298.
    [27]
    史训知,戴金星,王则民,等.联邦德国煤成气的甲烷碳同位素研究和对我们的启示[J].天然气工业,1985,5(2):1-9.(编辑 徐文明)(上接第616页)
    [28]
    薛冈,管路平,王良书,等.盆地超压地层识别方法:以四川盆地通南巴构造带为例[J].地球物理学进展,2004,19(3):645-651.
    [29]
    李仲东,张健,江兴福,等.川东北飞仙关组鲕滩气藏压力与成藏特征研究[J].矿物岩石,2009,29(4):39-44.
    [30]
    郭彤楼,张元春,邹华耀.川东北碳酸盐岩层系现今应力场与裂缝特征[J].断块油气田,2010,17(6):718-721.
    [31]
    孙波,周光亮,宋玲.川东北地区地层孔隙压力预测新方法及应用[J].石油天然气学报(江汉石油学院学报),2011,33(8):96-101.
    [32]
    何建坤,卢华复,张庆龙,等.四川盆地东北缘含气藏构造分析[J].石油学报,1997,18(3):7-12.
    [33]
    郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996:48-88.
    [34]
    Alan R.The future of pore-pressure prediction using geophysical methods[J].The leading edgy,2002:199-205.
    [35]
    Hunt J M.Generation and migration of petroleum fromabnormally pressured fluid compartments[J].AAPG Bulletin,1990,9(3):1-12.
    [36]
    Bradley J S,Powley D E.Pressure compartments in sedimentary basins:A review[M]//Ortoleva P J.Basin compartments and seals,AAPG Memoir 61.Tulsa:AAPG Press,1994:3-26.
    [37]
    Fillippone W.R.Estimation of formation parameters and the prediction of overpressure from seismic data[J].The SEG Research Symp,Geopressure studies,1982(10):17-21.
    [38]
    Hottman C E,Johnson R K.Estimation of formation pressures from log-derived shale properties[J].J Pet Technol,1991,17:717-722.
    [39]
    Wallace E W.Application of electric log measured pressures to drilling problems and a new simplified chart for wellsite pressure computation[J].Log Anal,1965,60:4-10.
    [40]
    Foster J B,Whalen H E.Estimation of formation pressure from electrical survey-offfshore Louisiana[J].Journal of Petroleum Technology,1966,18(2):165-171.
    [41]
    Eaton B A.Graphical method predicts geopressure worldwide[J].Word Oil,1976,183(1):100-104.
    [42]
    何生,宋国奇,王永诗,等.东营凹陷现今大规模超压系统整体分布特征及主控因素[J].地球科学——中国地质大学学报,2012,37(5):1029-1042.(编辑 徐文明)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2369) PDF downloads(1262) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return