Liu Junling, Wu Xuedong, Wang Dongzhai, He Zhenggang. Application of BP neural network to sedimentary micro-facies identification[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(s1): 52-55. doi: 10.11781/sysydz2014S1052
Citation: Liu Junling, Wu Xuedong, Wang Dongzhai, He Zhenggang. Application of BP neural network to sedimentary micro-facies identification[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(s1): 52-55. doi: 10.11781/sysydz2014S1052

Application of BP neural network to sedimentary micro-facies identification

doi: 10.11781/sysydz2014S1052
  • Received Date: 2014-10-15
  • Rev Recd Date: 2014-12-03
  • Publish Date: 2014-12-28
  • A method of sedimentary micro-facies identification based on logging data and BP neural network was proposed in this paper. Through deeply exploring limited logging data, sedimentological sample indexes were gained and the utilization rate of logging data was improved. A series of experiments were conducted in order to find the optimization criterion of the BP artificial neural network and a growing network training method was put forward. Finally, a actual case of net training and micro-facies identification by using sample set and natural samples was analyzed, which showed an accuracy ratio for 83% and realized both high efficiency and precision of micro-facies identification.

     

  • loading
  • [1]
    靳松,朱筱敏,钟大康.变差函数在沉积微相自动识别中的应用[J].石油学报,2006,27(3):57-60.
    [2]
    Deutsch C V,Journal,A G. GSLIB:geostatistical software library and user’s guide [M].New York: Oxford University Press,1992:340.
    [3]
    唐为清,郭荣坤,王忠东,等.沉积微相测井资料神经网络判别方法研究[J].沉积学报,2001,19(4):581-585.
    [4]
    许少华,刘扬,梁久祯,等.基于遗传—BP算法和图像处理的沉积微相识别[J].石油学报,2002,23 (3):48-51.
    [5]
    许少华,陈可为,梁久祯,等.基于遗传—BP算法和图像处理的沉积微相识别[J].大庆石油学院学报,2001,25(3):51-54.
    [6]
    E M Iloghalu. "Application of neural networks technique in lithofacies classifications used for 3-D reservoir geological modelling and exploration studies:a novel computer-based methodology for depositional environment interpretation"// AAPG Annual Convention.Salt Lake City,Utah,May 2003:11-14.
    [7]
    杨斌,匡立春,孙中春,等.神经网络及其在石油测井中的应用[M].北京:石油工业出版社,2005.
    [8]
    张昭昭,乔俊飞,杨刚.自适应前馈神经网络结构优化设计[J].智能系统学报,2011,6(4):312-317.
    [9]
    王金荣,刘洪涛.测井沉积微相识别方法及应用[J].大庆石油学院学报, 2004,28 (4):18-20.
    [10]
    王楠.测井曲线模式识别及其在地层对比中的应用[D].黑龙江大学硕士论文,2008.
    [11]
    李君,李少华,毛平,等.VC++结合Fortran升级地质统计学算法[J].物探与化探,2009,33 (6):715-717.
    [12]
    Carr J R, Miranda F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(6):1945-1952.
    [13]
    Funabashi K. On the approximate realization of continues mapping by neural networks[J].Neural Networks,1989,2:183-192.
    [14]
    Lippmann R P. Review of neural networks for speech recognition[J].Neural Computation,1989,1:1-38.
    [15]
    Cyberno G. Approximation by superpositions of a sigmoidal function[J].Mathematics of Control,Signals and Systems,1989,2(4):303-314.
    [16]
    孙鲁平,首皓,赵晓龙,等.基于微电阻率扫描成像测井的沉积微相识别[J].测井技术, 2009,33(4): 379-383.
    [17]
    周金应,桂碧雯,李茂,等.基于岩控的人工神经网络在渗透率预测中的应用[J].石油学报,2010,31(6):985-988.
    [18]
    K Aminian, S Ameri. Application of artificial neural networks for reservoir characterization with limited data[J].Journal of Petroleum Science and Engineering, 2005,49:212-222.
    [19]
    宋延杰,杨艳,杨青山,等.过程神经网络在厚层细分水淹解释中的应用[J].测井技术,2009,33(4) :340-344.
    [20]
    Fischetti A, Andrade A.Porosity images from well logs[J].Journal of Petroleum Science and Engineering,2002,36:149-158.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (990) PDF downloads(706) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return