Yang Youyun, Liu Xiqiang, Sun Rui. A new method for the calculation of secondary porosity originating from the dissolution of feldspars in deeply buried formations and its application: A case study of the Chang 81 Formation in Longdong area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(3): 395-401. doi: 10.11781/sysydz201603395
Citation: Yang Youyun, Liu Xiqiang, Sun Rui. A new method for the calculation of secondary porosity originating from the dissolution of feldspars in deeply buried formations and its application: A case study of the Chang 81 Formation in Longdong area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(3): 395-401. doi: 10.11781/sysydz201603395

A new method for the calculation of secondary porosity originating from the dissolution of feldspars in deeply buried formations and its application: A case study of the Chang 81 Formation in Longdong area, Ordos Basin

doi: 10.11781/sysydz201603395
  • Received Date: 2015-06-17
  • Rev Recd Date: 2016-04-05
  • Publish Date: 2016-05-28
  • Secondary porosity is an important accumulation space in clastic reservoirs. Among secondary pores, those pores originating from the dissolution of feldspars are dominant. A new method to calculate the volumes of secondary porosity from the dissolution of feldspars in deeply buried formations based on thermodynamic principle is proposed. The calculation method is as follows. The volume of secondary porosity originating from the dissolution of potassium feldspars=0.28×kaolinite content or 0.36×illite content. The volume of secondary porosity originating from the dissolution of albite feldspars=0.10×kaolinite content or 0.17×illite content. The volume of secondary porosity originating from the dissolution of anorthite feldspars=0.014×kaolinite content or 0.08×illite content. After a thorough investigation of petrologic characteristics, the new calculation method was applied to the Chang 81 Formation in Longdong area, Ordos Basin. The volumes of secondary porosity originating from the dissolution of feldspars in deeply buried formations in the Chang 81 Formation in the study area were calculated with the new method, and were compared with measured and simulated porosities. The average value of calculated secondary porosity from the dissolution of feldspars of 51 core samples from the Chang 81 Formation is 1.32%, which is close to the average measured value (1.44%) for those samples. The comparison between calculated and simulated results also confirms the reliability of this new method.

     

  • loading
  • [1]
    Surdam R C,Boese S W,Crossey L J.The chemistry of secondary porosity[M]//MacDonald D A,Surdam R C.Clastic diagenesis.Tulsa,Okla:American Association of Petroleum Geologists,1984:127-149.
    [2]
    黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用:以鄂尔多斯盆地三叠系延长组为例[J].地球科学,2003,28(4):419-424. Huang Sijing,Wu Wenhui,Liu Jie,et al.Generation of secondary porosity by meteoric water during time of subaerial exposure:An example from Yanchang Formation sandstone of Triassic of Ordos basin[J].Earth Science,2003,28(4):419-424.
    [3]
    Giles M,Marshall J D.Constraints on the development of secondary porosity in the subsurface:Re-evaluation of processes[J].Marine and Petroleum Geology,1986,3(3):243-255.
    [4]
    Surdam R C,Crossey L J,Hagen E S,et al.Organic-inorganic and sandstone diagenesis[J].AAPG Bulletin,1989,73(1):1-23.
    [5]
    Thyne G,Boudreau B P,Ramm M,et al.Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation,North Sea[J].AAPG Bulletin,2001,85(4):621-635.
    [6]
    Taylor T R,Giles M R,Hathon L A,et al.Sandstone diagenesis and reservoir quality prediction:Models,myths,and reality[J].AAPG Bulletin,2010,94(8):1093-1132.
    [7]
    陈丽华,赵澄林,纪友亮,等.碎屑岩天然气储集层次生孔隙的三种成因机理[J].石油勘探与开发,1999,26(5):77-79. Chen Lihua,Zhao Chenglin,Ji Youliang,et al.Three formation mecha-nisms of secondary porosity in clastic gas reservoir rocks[J].Petro-leum Exploration and Development,1999,26(5):77-79.
    [8]
    张枝焕,胡文瑄,曾溅辉,等.东营凹陷下第三系流体-岩石相互作用研究[J].沉积学报,2000,18(4):560-566. Zhang Zhihuan,Hu Wenxuan,Zeng Jianhui,et al.Study of fluid-rock interactions in Eogene formation in Dongying Depression,Bohai Gulf Basin[J].Acta Sedimentologica Sinica,2000,18(4):560-566.
    [9]
    钟大康,朱筱敏,周新源,等.次生孔隙形成期次与溶蚀机理:以塔中地区志留系沥青砂岩为例[J].天然气工业,2006,26(9):21-24. Zhong Dakang,Zhu Xiaomin,Zhou Xinyuan,et al.Phases of secondary pore generation and dissolution mechanism:Taking Silurian asphaltic sandstone in Central Tarim Basin as an example[J].Natural Gas Industry,2006,26(9):21-24.
    [10]
    季汉成,徐珍.深部碎屑岩储层溶蚀作用实验模拟研究[J].地质学报,2007,81(2):212-219. Ji Hancheng,Xu Zhen.Experimental simulation for dissolution in clastic reservoirs of the deep zone[J].Acta Geologica Sinica,2007,81(2):212-219.
    [11]
    朱筱敏,王英国,钟大康,等.济阳坳陷古近系储层孔隙类型与次生孔隙成因[J].地质学报,2007,81(2):197-204. Zhu Xiaomin,Wang Yingguo,Zhong Dakang,et al.Pore types and secondary pore evolution of Paleogene reservoir in the Ji-yang Sag[J].Acta Geologica Sinica,2007,81(2):197-204.
    [12]
    郝乐伟,王琪,廖朋,等.番禺低隆起-白云凹陷北坡第三系储层次生孔隙形成机理分析[J].沉积学报,2011,29(4):734-743. Hao Lewei,Wang Qi,Liao Peng,et al.Forming mechanism of secondary porosity in Tertiary reservoirs in Panyu Low Uplift and north slope of Baiyun Sag[J].Acta Sedimentologica Sinica,2011,29(4):734-743.
    [13]
    赵珊珊,张哨楠,万友利.塔中顺托果勒低隆区柯坪塔格组长石溶蚀及对储层的影响[J].石油实验地质,2015,37(3):293-299. Zhao Shanshan,Zhang Shaonan,Wan Youli.Feldspar dissolution and its effect on reservoir in Kepingtage Formation,Shun-tuoguole Low Uplift,central Tarim Basin[J].Petroleum Geology & Experiment,2015,37(3):293-299.
    [14]
    França A B,Araújo L M,Maynard J B,et al.Secondary porosity formed by deep meteoric leaching:Botucatu eolianite,southern South America[J].AAPG Bulletin,2003,87(7):1073-1082.
    [15]
    丁晓琪,韩玫梅,张哨楠,等.大气淡水在碎屑岩次生孔隙中的作用[J].地质论评,2014,60(1):145-158. Ding Xiaoqi,Han Meimei,Zhang Shaonan,et al.Roles of meteoric water on secondary porosity of siliciclastic reservoirs[J].Geological Review,2014,60(1):145-158.
    [16]
    Stoessell R K,Pittman E D.Secondary porosity revisited:The che-mistry of feldspar dissolution by carboxylic acids and anions[J].AAPG Bulletin,1990,74(12):1795-1805.
    [17]
    Huang W L,Longo J M.The effect of organics on feldspar dissolution and the development of secondary porosity[J].Chemical Geology,1992,98(3/4):271-292.
    [18]
    Franklin S P,Hajash Jr A,Dewers T A,et al.The role of carbo-xylic acids in albite and quartz dissolution:An experimental study under diagenetic conditions[J].Geochimica et Cosmochimica Acta,1994,58(20):4259-4279.
    [19]
    黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17. Huang Sijing,Yang Junjie,Zhang Wenzheng,et al.Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J].Acta Sedimentologica Sinica,1995,13(1):7-17.
    [20]
    杨俊杰,黄月明,张文正,等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发,1995,22(4):82-91. Yang Junjie,Huang Yueming,Zhang Wenzheng,et al.Experimental approach of dissolution of feldspar sand stone by acetic acid[J].Petroleum Exploration and Development,1995,22(4):82-91.
    [21]
    向廷生,蔡春芳,付华娥.不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报,2004,22(4):597-602. Xiang Tingsheng,Cai Chunfang,Fu Hua'e.Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J].Acta Sedimentologica Sinica,2004,22(4):597-602.
    [22]
    陈传平,固旭,周苏闽,等.不同有机酸对矿物溶解的动力学实验研究[J].地质学报,2008,82(7):1007-1012. Chen Chuanping,Gu Xu,Zhou Sumin,et al.Experimental research on dissolution dynamics of main minerals in several aqueous orga-nic acid solutions[J].Acta Geologica Sinica,2008,82(7):1007-1012.
    [23]
    张永旺,曾溅辉,郭建宇.低温条件下长石溶解模拟实验研究[J].地质论评,2009,55(1):134-142. Zhang Yongwang,Zeng Jianhui,Guo Jianyu.Simulated experimental study of feldspar dissolution in low temperature[J].Geological Review,2009,55(1):134-142.
    [24]
    朱焕来,曲希玉,刘立,等.CO2流体-长石相互作用实验研究[J].吉林大学学报(地球科学版),2011,41(3):697-706. Zhu Huanlai,Qu Xiyu,Liu Li,et al.Study on interaction between the feldspar and CO2 fluid[J].Journal of Jilin University(Earth Science Edition),2011,41(3):697-706.
    [25]
    于川淇,李劭彧,邓西里,等.长石与流体相互作用的模拟实验研究[J].特种油气藏,2014,21(1):120-123. Yu Chuanqi,Li Shaoyu,Deng Xili,et al.Physical modeling experimental study on feldspar-fluid interaction[J].Special Oil and Gas Reservoirs,2014,21(1):120-123.
    [26]
    罗孝俊,杨卫东.有机酸对长石溶解度影响的热力学研究[J].矿物学报,2001,21(2):183-188. Luo Xiaojun,Yang Weidong.The effect of organic acid on feldspar solubility:A thermodynamic study[J].Acta Mineralogica Sinica,2001,21(2):183-188.
    [27]
    赖兴运,于炳松,陈军元,等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学(D辑地球科学),2004,34(1):45-53. Lai Xingyun,Yu Bingsong,Chen Junyuan,et al.Thermodynamic conditions of framework grain dissolution of clastic rocks and its application in Kela 2 gas field[J].Science in China (Series D Earth Sciences),2005,48(1):21-31.
    [28]
    黄可可,黄思静,佟宏鹏,等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482. Huang Keke,Huang Sijing,Tong Hongpeng,et al.Thermodynamic calculation of feldspar dissolution and its significance on research of clastic reservoir[J].Geological Bulletin of China,2009,28(4):474-482.
    [29]
    远光辉,操应长,杨田,等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J].地学前缘,2013,20(5):207-219. Yuan Guanghui,Cao Yingchang,Yang Tian,et al.Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J].Earth Science Frontiers,2013,20(5):207-219.
    [30]
    李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质,2005,26(2):220-223. Li Wenguo,Zhang Xiaopeng,ZhongYumei.Formation mechanism of secondary dissolved pores in arcose[J].Oil & Gas Geology,2005,26(2):220-223.
    [31]
    赵国泉,李凯明,赵海玲,等.鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成[J].石油勘探与开发,2005,32(1):53-55. Zhao Guoquan,Li Kaiming,Zhao Hailing,et al.Feldspar corrosion and secondary pore formation in the Upper Paleozoic gas reservoir,Ordos Basin[J].Petroleum Exploration and Development,2005,32(1):53-55.
    [32]
    张霞,林春明,陈召佑,等.鄂尔多斯盆地镇泾区块延长组长8油层组砂岩储层特征[J].高校地质学报,2012,18(2):328-340. Zhang Xia,Lin Chunming,Chen Zhaoyou,et al.The reservoir characteristics of Chang 8 oil layer group from the Yanchang Formation in Zhenjing area,Ordos Basin[J].Geological Journal of China Universities,2012,18(2):328-340.
    [33]
    杨华,钟大康,姚泾利,等.鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J].地学前缘,2013,20(2):69-76. Yang Hua,Zhong Dakang,Yao Jingli,et al.Pore genetic types and their controlling factors in sandstone reservoir of Yanchang Formation in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2):69-76.
    [34]
    兰叶芳,邓秀芹,程党性,等.鄂尔多斯盆地三叠系延长组次生孔隙形成机制[J].地质科技情报,2014,33(6):128-136. Lan Yefang,Deng Xiuqin,Cheng Dangxing,et al.Formation mechanisms of secondary porosity in the Triassic Yanchang Formation,Ordos Basin[J].Geological Science and Technology Information,2014,33(6):128-136.
    [35]
    罗静兰,李忠兴,史成恩,等.鄂尔多斯盆地西南部上三叠统延长组长8、长6油层组的沉积体系与物源方向[J].地质通报,2008,27(1):101-111. Luo Jinglan,Li Zhongxing,Shi Cheng'en,et al.Depositional systems and provenance directions for the Chang 6 and Chang 8 reservoir groups of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin,China[J].Geological Bulletin of China,2008,27(1):101-111.
    [36]
    付晶,吴胜和,罗安湘,等.鄂尔多斯盆地陇东地区延长组纵向储层质量差异及主控因素分析[J].地学前缘,2013,20(2):98-107. Fu Jing,Wu Shenghe,Luo Anxiang,et al.Reservoir quality and its controlling factors of Chang 8 and Chang 6 members in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2):98-107.
    [37]
    林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985. Lin Chuanxian,Bai Zhenghua,Zhang Zheru.Handbook of thermodynamic data of minerals and related compounds[M].Beijing:Science Press,1985.
    [38]
    黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506. Huang Sijing,Huang Keke,Feng Wenli,et al.Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis:A case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation,western Sichuan Depression[J].Geochimica,2009,38(5):498-506.
    [39]
    孟万斌,吕正祥,冯明石,等.致密砂岩自生伊利石的成因及其对相对优质储层发育的影响:以川西地区须四段储层为例[J].石油学报,2011,32(5):783-790. Meng Wanbin,Lü Zhengxiang,Feng Mingshi,et al.The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs:A case study on sandstones in the 4th member of Xujiahe Formation,western Sichuan Basin[J].Acta Petrolei Sinica,2011,32(5):783-790.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1289) PDF downloads(1091) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return