Xi Binbin, Tenger, Yu Linjie, Jiang Hong, Shen Baojian, Deng Mo. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473
Citation: Xi Binbin, Tenger, Yu Linjie, Jiang Hong, Shen Baojian, Deng Mo. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473

Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin

doi: 10.11781/sysydz201604473
  • Received Date: 2016-03-11
  • Rev Recd Date: 2016-06-06
  • Publish Date: 2016-07-28
  • Facies studies on fluid inclusions revealed that aqueous and gas-bearing inclusions are distributed in quartz and calcite veins of shale gas reservoirs in wells Jiaye A, Nanye A and Pengye A in the southeastern Sichuan Basin. Raman probe analyses showed that gas-bearing inclusions mainly contain CH4. The homogenization temperature of aqueous inclusions ranges from 215.8-245.4 ℃ in quartz veins of well Jiaoye A. The homogenization temperature of aqueous inclusions ranges from 214.4-240.8 ℃ in quartz veins in well Nanye A. The homogenization temperature of aqueous inclusions ranges from 177.8-210.4 ℃ in calcite veins in well Nanye A. The homogenization temperature of aqueous inclusions ranges from 128.5-156.4 ℃ in calcite veins in well Pengye A. The trapping pressure of gas-bearing inclusions and aqueous inclusions ranges from 114.9-130.5 MPa in quartz veins in well Jiaoye A. The trapping pressure of gas-bearing inclusions and aqueous inclusions ranges from 124.0-151.5 MPa in quartz veins in well Nanye A. The trapping pressure of gas-bearing inclusions and aqueous inclusions ranges from 124.0-151.5 MPa in quartz veins in well Nanye A. The trapping pressure of gas-bearing inclusions and aqueous inclusions ranges from 114.0-122.3 MPa in calcite veins in well Nanye A. The trapping pressure of gas-bearing inclusions and aqueous inclusions ranges from 32.5-43.0 MPa in calcite veins in well Pengye A. Fluid inclusions in these wells were trapped during the Yanshanian period. Reservoirs were over pressured when fluid inclusions were trapped in wells Jiaoye A and Nanye A, but under normal conditions in well Pengye A. Pressure coefficients when trapping showed similar regularities as measured well pressure, inferring that the gas preservation conditions in wells Jiaoye A and Nanye A are better than that of Pengye A.

     

  • [1]
    李保华,付绍洪,顾雪祥,等.川东北地区上二叠统油气储层中流体包裹体特征及成藏期研究[J].矿物岩石地球化学通报,2012,31(2):105-113. Li Baohua,Fu Shaohong,Gu Xuexiang,et al.Fluid inclusion characteristics of the Later Permian reservoir in the northeastern Sichuan and implications for petroleum accumulation[J].Bulletin of Minera-logy,Petrology and Geochemistry,2012,31(2):105-113.
    [2]
    张元春,邹华耀,李平平,等.川东北元坝地区长兴组流体包裹体特征及油气充注史[J].新疆石油地质,2010,31(3):250-251. Zhang Yuanchun,Zou Huayao,Li Pingping,et al.Fluid inclusion feature and hydrocarbon charge history of Changxing Formation in Yuanba area in northeastern Sichuan Basin[J].Xinjiang Petro-leum Geology,2010,31(3):250-251.
    [3]
    谢增业,单秀琴,李剑,等.川东北飞仙关组包裹体特征及其在天然气成藏研究中的应用[J].矿物岩石地球化学通报,2006,25(1):49-54. Xie Zengye,Shan Xiuqin,Li Jian,et al.The characteristics of fluid inclusions in carbonate of the Feixianguan Formation in northeastern Sichuan Basin and its application to identify gas reservoirs[J].Bulletin of Mineralogy,Petrology and Geochemistry,2006,25(1):49-54
    [4]
    秦建中,孟庆强,付小东.川东北地区海相碳酸盐岩三期成烃成藏过程[J].石油勘探与开发,2008,35(5):548-556. Qin Jianzhong,Meng Qingqiang,Fu Xiaodong.Three hydrocarbon generation and accumulation processes of marine carbonate rocks in northeastern Sichuan Basin,China[J].Petroleum Exploration and Develement,2008,35(5):548-556.
    [5]
    饶丹,秦建中,许锦,等.塔河油田奥陶系油藏成藏期次研究[J].石油实验地质,2014,36(1):83-88. Rao Dan,Qin Jianzhong,Xu Jin,et al.Accumulation periods of Ordovician reservoirs in Tahe Oil Field[J].Petroleum Geology & Experiment,2014,36(1):83-88.
    [6]
    夏茂龙,范毅,江蓉蓉,等.四川盆地东北部飞仙关组储层流体包裹体特征[J].石油学报,2012,33(S2):74-81. Xia Maolong,Fan Yi,Jiang Rongrong,et al.The characteristics of fluid inclusions in Feixianguan Formation,northeastern Sichuan Basin,China[J].Acta Petrolei Sinica,2012,33(S2):74-81.
    [7]
    李保华,顾雪祥,李黎,等.川东北毛坝气藏含自然硫包裹体的发现及其地质意义[J].矿物学报,2011,31(3):541-549. Li Baohua,Gu Xuexiang,Li Li,et al.Discovery and geological significance of natural sulfur-bearing aqueous inclusions in the Maoba gas reservoir,NE-Sichuan,China[J].Acta Mineralogica Sinica,2011,31(3):541-549.
    [8]
    刘德汉,肖贤明,熊永强,等.四川东部飞仙关组鲕滩气藏储层含自然硫不混溶包裹体及硫化氢成因研究[J].中国科学(D辑 地球科学),2006,36(6):520-532. Liu Dehan,Xiao Xianming,Xiong Yongqiang,et al.Origin of natural sulphur-bearing immiscible inclusions and H2S in oolite gas reservoir,eastern Sichuan[J].Science in China:Series D Earth Sciences,2006,49(3):242-257.
    [9]
    冯松宝,徐文明,顿亚鹏.库车坳陷克拉苏构造带超高压大气田储层流体包裹体特征及成藏信息[J].石油实验地质,2014,36(2):211-217. Feng Songbao,Xu Wenming,Dun Yapeng.Fluid inclusion characte-ristics of reservoirs in Kelasu tectonic zone of Kuqa Depression and its accumulation information[J].Petroleum Geology & Experiment,2014,36(2):211-217.
    [10]
    李鑫.鄂尔多斯盆地有机包裹体与油气成藏特征研究[J].断块油气田,2014,21(6):681-685. Li Xin.Characteristics of organic inclusions and hydrocarbon accumulation in Ordos Basin[J].Fault-Block Oil and Gas Field,2014,21(6):681-685.
    [11]
    张俊武,邹华耀,李平平,等.含烃盐水包裹体PVT模拟新方法及其在气藏古压力恢复中的应用[J].石油实验地质,2015,37(1):102-108. Zhang Junwu,Zou Huayao,Li Pingping,et al.A new PVT simulation method for hydrocarbon-containing inclusions and its application to reconstructing paleo-pressure of gas reservoirs[J].Petroleum Geology & Experiment,2015,37(1):102-108.
    [12]
    高键,何生,易积正.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J].石油与天然气地质,2015,36(3):472-480. Gao Jian,He Sheng,Yi Jizheng.Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J].Oil & Gas Geology,2015,36(3):472-480.
    [13]
    张美珍,施伟军,张志荣.显微激光拉曼光谱仪的地质应用[J].石油实验地质,2008,30(3):307-310. Zhang Meizhen,Shi Weijun,Zhang Zhirong.Laser Raman microscope and its application in geology[J].Petroleum Geology & Experiment,2008,30(3):307-310.
    [14]
    Frezzotti M L,Tecce F,Casagli A.Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration,2012,112:1-20.
    [15]
    刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:207-249. Liu Bin,Shen Kun.Thermodynamics of fluid inclusions[M].Beijing:Geological Publishing House,1999:207-249.
    [16]
    Lu Wanjun,Chou I M,Burruss R C,et al.A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J].Geochimica et Cosmochimica Acta,2007,71(16):3969-3978.
    [17]
    Chou I M,Song Y C,Burruss R C.A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material[J].Geochimica et Cosmochimica Acta,2008,72(21):5217-5231.
    [18]
    Chou I M,Burruss R C,Lu Wanjun.Chapter 24:A new optical capillary cell for spectroscopic studies of geologic fluids at pressures up to 100 MPa[M]//Chen Jiuhua,Wang Yanbin,Duffy T S,et al.Advances in high-pressure technology for geophysical applications.Amsterdam:Elsevier,2005:475-485.
    [19]
    Duan Zhenhao,Møller N,Greenberg J,et al.The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 ℃ and from 0 to 1600 bar[J].Geochimica et Cosmochimica Acta,1992,56(4):1451-1460.
    [20]
    Duan Zhenhao,Mao Shide.A thermodynamic model for calculating methane solubility,density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2 000 bar[J].Geochimica et Cosmochimica Acta,2006,70(13):3369-3386.
    [21]
    Duan Zhenhao,Møller N,Weare J H.An equation of state for the CH4-CO2-H2O system:I.Pure systems from 0 to 1 000 ℃ and 0 to 8 000 bar[J].Geochimica et Cosmochimica Acta ,1992,56(7):2605-2617.
    [22]
    施伟军,蒋宏,席斌斌.应用储层流体包裹体PVTX模拟研究油气成藏期次:以塔里木盆地托甫台地区为例[J].高校地质学报,2012,18(1):125-132. Shi Weijun,Jiang Hong,Xi Binbin.Application of the PVTX simulation of reservoir fluid inclusions to estimate petroleum charge stages:A case study in the Tuoputai area of Tarim Basin[J].Geolo-gical Journal of China Universities,2012,18(1):125-132.
    [23]
    刘若冰.超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J].沉积学报,2015,33(4):817-827. Liu Ruobing.Analyses of influences on shale reservoirs of Wufeng-Longmaxi formation by overpressure in the south-eastern part of Sichuan Basin[J].Acta Sedimentologica Sinica,2015,33(4):817-827.
    [24]
    郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发,2016,43(3):317-326. Guo Tonglou.Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J].Petroleum Exploration and Development,2016,43(3):317-326.
    [25]
    刘洪林,王红岩,方朝合,等.中国南方海相页岩气超压机制及选区指标研究[J].地学前缘,2016,23(2):48-54. Liu Honglin,Wang Hongyan,Fang Chaohe,et al.The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China[J].Earth Science Frontiers,2016,23(2):48-54.
  • Relative Articles

    [1]ZHAO Guowei, DENG Mo, WANG Yuanzheng, JIANG Xiaoqiong, ZENG Huasheng, ZHANG Changjiang. Morphological characteristics of framboidal pyrite and their paleo-environmental significance in Longmaxi Formation of Weirong area, southern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 261-272. doi: 10.11781/sysydz2025020261
    [2]MENG Zhiyong, BAO Hanyong, LI Kai, YI Yuhao, SHU Zhiheng, MENG Fulin. Analysis and significance of shale reservoir differences between Wujiaping Formation in Hongxing area and Longmaxi Formation in Jiaoshiba area, eastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1002-1014. doi: 10.11781/sysydz2024051002
    [3]REN Guanbao, CHEN Lei, JI Yubing, CHENG Qingsong. Shale lithofacies types and reservoir characteristics from Ordovician Wufeng Formation to the first sub-member of the first member of Silurian Longmaxi Formation, northeast Zhaotong area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 443-454. doi: 10.11781/sysydz202303443
    [4]TANG Jianming, HE Jianhua, WEI Limin, LI Yong, DENG Hucheng, LI Ruixue, ZHAO Shuang. Pressure evolution of shale gas reservoirs in Wufeng-Longmaxi formations, Lintanchang area, southeast Sichuan Basin and its geological significance[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 739-750. doi: 10.11781/sysydz202304739
    [5]WEI Fubin, LIU Zhujiang, CHEN Feiran, YAN Wei, WANG Qiang. Discussion on genesis and geological significance of "low resistivity and low gas content" of Longmaxi Formation shale in southeastern Sichuan[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1089-1096. doi: 10.11781/sysydz2023061089
    [6]LIU An, WANG Qiang, CHEN Xiaohong, LI Xubing, Zhang Baomin, LI Hai, Li Jitao. Geochemical characteristics of paleo-fluids in thrust belt in the northern Middle Yangtze and its significance for shale gas preservation: a case study of well Baodi 1[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 620-628. doi: 10.11781/sysydz202204620
    [7]SONG Zhenxiang, WANG Baohua, WEI Xiangfeng, MA Zhongliang. Application of "retention coefficiency" method in shale gas resource evaluation: a case study of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 535-544. doi: 10.11781/sysydz202203535
    [8]WANG Qiang, MU Yapeng, CHEN Xian, SONG Zhenxiang, MA Zhongliang, QIU Qi. Characteristics of methane isothermal adsorption of deep shale from Lower Silurian Longmaxi Formation in southeastern Sichuan Basin and its geological significance[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(1): 180-187. doi: 10.11781/sysydz202201180
    [9]YU Lingjie, LIU Keyu, FAN Ming, LIU Youxiang. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
    [10]WANG Ruyue, HU Zongquan, BAO Hanyong, WU Jing, DU Wei, WANG Pengwei, PENG Zeyang, LU Ting. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
    [11]LIU Weixin, LU Longfei, WEI Zhihong, YU Lingjie, ZHANG Wentao, XU Chenjie, YE Deliao, SHEN Baojian, FAN Ming. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 378-386. doi: 10.11781/sysydz202003378
    [12]WANG Qiang, WEI Xiangfeng, WEI Fubin, YAN Jihong, WAN Li. Overpressure in shale gas reservoirs of Wufeng-Longmaxi formations, Fuling area, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(3): 333-340. doi: 10.11781/sysydz201903333
    [13]WANG Ruyue, HU Zongquan, NIE Haikuan, LIU Zhongbao, CHEN Qian, GAO Bo, LIU Guangxiang, GONG Dajian. Comparative analysis and discussion of shale reservoir characteristics in the Wufeng-Longmaxi and Niutitang formations: a case study of the well JY1 in SE Sichuan Basin and well TX1 in SE Guizhou area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2018, 40(5): 639-649. doi: 10.11781/sysydz201805639
    [14]Geng Yikai, Jin Zhenkui, Zhao Jianhua, Wen Xin, Wang Yang. Controlling factors of pore types in shale reservoirs:A case study from the Longmaxi Formation in Jiaoshiba area, eastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(1): 71-78. doi: 10.11781/sysydz201701071
    [15]Yu Lingjie, Fan Ming, Tenger, Liu Youxiang. Shale gas occurrence under burial conditions[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438
    [16]Yang Yunfeng. Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 466-472. doi: 10.11781/sysydz201604466
    [17]Zhang Hanrong, Wang Qiang, Ni Kai, Li Chunyan. Six characteristics and main controlling factors of shale reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(3): 320-325. doi: 10.11781/sysydz201603320
    [18]Liu Weixin, Bao Fang, Yu Lingjie, Zhang Wentao, Zhang Qingzheng, Lu Longfei, Fan Ming. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453
    [19]Zhang Junwu, Zou Huayao, Li Pingping, Fu Xiaoyue, Wang Wei. A new PVT simulation method for hydrocarbon-containing inclusions and its application to reconstructing paleo-pressure of gas reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(1): 102-108. doi: 10.11781/sysydz201501102
    [20]Liu Youxiang, Yu Lingjie, Zhang Qingzhen, Bao Fang, Lu Longfei. Mineral composition andmicroscopic reservoir features of Longmaxi shales in southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(3): 328-333. doi: 10.11781/sysydz201503328
  • Cited by

    Periodical cited type(28)

    1. 丁文龙,王垚,王生晖,刘霆锋,张子游,勾通,张梦阳,贺湘. 页岩储层非构造裂缝研究进展与思考. 地学前缘. 2024(01): 297-314 .
    2. 斯尚华,喻意,王小龙,王新星,赵玉涛,吴伟涛. 松辽盆地三肇凹陷扶余油层致密油气充注期次及其成藏贡献. 吉林大学学报(地球科学版). 2024(05): 1457-1467 .
    3. 丁文龙 ,王垚 ,张子游 ,刘天顺 ,程晓云 ,勾通 ,王生晖 ,刘霆锋 . 页岩储层构造裂缝活动期次及开启性研究进展与展望. 地学前缘. 2024(05): 1-16 .
    4. 唐建明,何建华,魏力民,李勇,邓虎成,李瑞雪,赵爽. 川东南林滩场地区五峰组——龙马溪组页岩气藏压力演化及其地质意义. 石油实验地质. 2023(04): 739-750 . 本站查看
    5. 赵融康,黄诚,黄继文. 塔里木盆地顺南地区奥陶系高压气藏成藏过程分析. 东北石油大学学报. 2023(06): 13-23+126 .
    6. 郭旭升,腾格尔,魏祥峰,俞凌杰,陆现彩,孙磊,魏富彬. 四川盆地深层海相页岩气赋存机理与勘探潜力. 石油学报. 2022(04): 453-468 .
    7. 刘安,王强,陈孝红,李旭兵,张保民,李海,李继涛. 中扬子北缘冲断构造带的古流体记录及其对页岩气保存意义——以保地1井为例. 石油实验地质. 2022(04): 620-628 . 本站查看
    8. 高键,李慧莉,何治亮,李双建,刘光祥,袁玉松,李英强,李天义,何生. 渝东彭水地区常压页岩气压力演化与富集保存. 天然气工业. 2022(08): 124-135 .
    9. 高键,李英强,何生,何治亮,李双建,沃玉进,李文,翟刚毅,Zhao Jian-xin. 鄂西宜昌地区页岩气勘探发现对MVT铅锌矿成矿的指示意义. 地球科学. 2021(06): 2230-2245 .
    10. 席斌斌,蒋宏,许锦,陈强路,尤东华. 基于包裹体PVTx数值模拟恢复油藏古温压——存在的问题、对策及应用实例. 石油实验地质. 2021(05): 886-895 . 本站查看
    11. 王濡岳,胡宗全,周彤,包汉勇,吴靖,杜伟,何建华,王鹏威,陈前. 四川盆地及其周缘五峰组-龙马溪组页岩裂缝发育特征及其控储意义. 石油与天然气地质. 2021(06): 1295-1306 .
    12. 向杰,陈尚斌,王阳,蒋天国,薛晓辉,王笑奇,朱炎铭. 断裂体系对页岩气保存的影响——以滇东北地区五峰—龙马溪组为例. 煤炭学报. 2021(11): 3599-3612 .
    13. 刘安,蔡全升,陈孝红,肖七林,李海,彭中勤,苗凤彬,李培军,黄惠兰. 雪峰隆起西缘页岩气构造保存条件的古流体评价. 大地构造与成矿学. 2021(06): 1161-1173 .
    14. 袁玉松,方志雄,何希鹏,李双建,彭勇民,龙胜祥. 彭水及邻区龙马溪组页岩气常压形成机制. 油气藏评价与开发. 2020(01): 9-16+21 .
    15. 陈强路,席斌斌,韩俊,许锦,吴鲜,朱秀香,马中良. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素:来自流体包裹体的证据. 中国石油勘探. 2020(03): 121-133 .
    16. 马中良,申宝剑,潘安阳,腾格尔,宁传祥,郑伦举. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识. 石油实验地质. 2020(03): 428-433 . 本站查看
    17. 腾格尔,陶成,胡广,申宝剑,马中良,潘安阳,王杰,王向华,徐二社. 排烃效率对页岩气形成与富集的影响. 石油实验地质. 2020(03): 325-334+344 . 本站查看
    18. 刘安,陈孝红,李培军,周鹏,李海,蔡全升,罗胜元. 宜昌天阳坪断裂两侧页岩气保存条件对比研究. 地质科技通报. 2020(02): 10-19 .
    19. 席斌斌,申宝剑,蒋宏,杨振恒,王小林. 天然气藏中CH_4—H_2O—NaCl体系不混溶包裹体群捕获温压恢复及应用. 天然气地球科学. 2020(07): 923-930 .
    20. 王濡岳,聂海宽,胡宗全,刘光祥,席斌斌,刘伟新. 压力演化对页岩气储层的控制作用——以四川盆地五峰组—龙马溪组为例. 天然气工业. 2020(10): 1-11 .
    21. 董敏,王宗秀,董会,张林炎,宋微,郭迎春,李小诗,冯兴强,马立成,季长军. 皖南地区二叠系孤峰组页岩中高密度含甲烷包裹体特征及其地质意义. 地质力学学报. 2020(06): 872-880 .
    22. WANG Ruyue,HU Zongquan,LONG Shengxiang,LIU Guangxiang,ZHAO Jianhua,DONG Li,DU Wei,WANG Pengwei,YIN Shuai. Differential Characteristics of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Shale Reservoir and its Implications for Exploration and Development of Shale Gas in/around the Sichuan Basin. Acta Geologica Sinica(English Edition). 2019(03): 520-535 .
    23. 黎琼,欧光习,汪生秀,张敏,吴迪. 渝东南地区五峰组—龙马溪组页岩气储层流体地球化学特征——以酉参2井为例. 地球科学与环境学报. 2019(05): 529-540 .
    24. 李文,何生,张柏桥,何治亮,陈曼霏,张殿伟,李天义,高键. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报. 2018(04): 402-415 .
    25. 刘安,欧文佳,黄惠兰,危凯,李海,陈孝红. 湘鄂西地区奥陶系—志留系滑脱层古流体对页岩气保存的意义. 天然气工业. 2018(05): 34-43 .
    26. 斯尚华,赵靖舟,蒙启安,耳闯,吴伟涛,李军,白玉彬. 三肇凹陷扶余油层方解石胶结物特征及其对储层致密化的影响. 油气地质与采收率. 2018(02): 58-63 .
    27. 腾格尔,申宝剑,俞凌杰,仰云峰,张文涛,陶成,席斌斌,张庆珍,鲍芳,秦建中. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理. 石油勘探与开发. 2017(01): 69-78 .
    28. 王波,杨海风,王孝辕,刘庆顺. 黄河口凹陷陡坡带B27构造古近系油气成藏期——基于流体包裹体的证据. 断块油气田. 2016(06): 693-696 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.4 %FULLTEXT: 21.4 %META: 75.0 %META: 75.0 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %其他: 0.7 %其他: 0.7 %China: 0.5 %China: 0.5 %Hamadan: 1.0 %Hamadan: 1.0 %India: 0.7 %India: 0.7 %Rochester: 0.5 %Rochester: 0.5 %Wan Chai: 0.3 %Wan Chai: 0.3 %[]: 0.7 %[]: 0.7 %三门峡: 0.2 %三门峡: 0.2 %上海: 0.5 %上海: 0.5 %加利福尼亚州: 0.5 %加利福尼亚州: 0.5 %北京: 6.8 %北京: 6.8 %南京: 0.2 %南京: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %城南: 0.2 %城南: 0.2 %天津: 0.2 %天津: 0.2 %奥斯陆: 0.2 %奥斯陆: 0.2 %宁波: 0.5 %宁波: 0.5 %弗吉尼亚州: 0.7 %弗吉尼亚州: 0.7 %张家口: 2.2 %张家口: 2.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %新乡: 0.5 %新乡: 0.5 %昆明: 0.2 %昆明: 0.2 %杭州: 0.2 %杭州: 0.2 %武汉: 1.4 %武汉: 1.4 %济南: 1.0 %济南: 1.0 %淄博: 0.2 %淄博: 0.2 %淮安: 0.2 %淮安: 0.2 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.2 %湘潭: 0.2 %漯河: 0.3 %漯河: 0.3 %盐城: 0.5 %盐城: 0.5 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 57.7 %芒廷维尤: 57.7 %芝加哥: 0.2 %芝加哥: 0.2 %荆州: 0.5 %荆州: 0.5 %莫斯科: 1.0 %莫斯科: 1.0 %衢州: 0.2 %衢州: 0.2 %西宁: 7.8 %西宁: 7.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %遵义: 0.2 %遵义: 0.2 %郑州: 1.7 %郑州: 1.7 %金华: 0.2 %金华: 0.2 %长治: 0.2 %长治: 0.2 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.5 %青岛: 0.5 %首尔: 0.2 %首尔: 0.2 %其他其他ChinaHamadanIndiaRochesterWan Chai[]三门峡上海加利福尼亚州北京南京哥伦布城南天津奥斯陆宁波弗吉尼亚州张家口成都扬州新乡昆明杭州武汉济南淄博淮安湖州湘潭漯河盐城盘锦石家庄芒廷维尤芝加哥荆州莫斯科衢州西宁贵阳运城遵义郑州金华长治阳泉青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1227) PDF downloads(1452) Cited by(45)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return