Zhang Yuying, He Zhiliang, Gao Bo, Liu Zhongbao. Sedimentary environment of the Lower Cambrian organic-rich shale and its influence on organic content in the Upper Yangtze[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(2): 154-161. doi: 10.11781/sysydz201702154
Citation: Zhang Yuying, He Zhiliang, Gao Bo, Liu Zhongbao. Sedimentary environment of the Lower Cambrian organic-rich shale and its influence on organic content in the Upper Yangtze[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(2): 154-161. doi: 10.11781/sysydz201702154

Sedimentary environment of the Lower Cambrian organic-rich shale and its influence on organic content in the Upper Yangtze

doi: 10.11781/sysydz201702154
  • Received Date: 2016-08-19
  • Rev Recd Date: 2017-02-03
  • Publish Date: 2017-03-28
  • Rock samples from 3 typical Lower Cambrian outcrops in the Upper Yangtze have been collected to test the content of total organic carbon (TOC) as well as major elements and trace elements. The characteristics of primary productivity and redox in the Early Cambrian, and their effect on organic enrichment were analyzed. In stages Ⅰ-Ⅱ, the shallow shelf was anoxic and ferruginous with a high primary productivity; the deep shelf was anoxic and sulphate rich with a low primary productivity; and the slope-basin where upwelling brought massive nutrients was anoxic and ferruginous with an extremely high primary productivity. In stage Ⅲ, the shelf was changed to oxic communicating well with the open sea and decreasing the preservation of organic matter. Although the slope-basin became oxic-suboxic in this stage, the primary productivity was high enough to prevent organic matter from complete aerobic degradation before it was buried. In general, organic-rich shale in the shelf which was deposited in a reducing environment was controlled by in the Eh at the bottom; organic-rich shale in slope-basin with a higher TOC content was controlled by primary productivity as well as the sedimentary environment. Organic-rich shale of the Lower Cambrian deposited on the shelf and in the slope-deep basin would be a target layer for shale gas exploration and exploitation.

     

  • loading
  • [1]
    刘树根,曾祥亮,黄文明,等. 四川盆地页岩气藏和连续型-非连续型气藏基本特征[J]. 成都理工大学学报(自然科学版),2009,36(6):578-592. Liu Shugen,Zeng Xiangliang,Huang Wenming,et al. Basic characteristics of shale and continuous-discontinuous transition gas reservoirs in Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2009,36(6):578-592.
    [2]
    王兰生,邹春艳,郑平,等. 四川盆地下古生界存在页岩气的地球化学依据[J]. 天然气工业,2009,29(5):59-62. Wang Lansheng,Zou Chunyan,Zheng Ping,et al. Geochemical evidence of shale gas existed in the Lower Paleozoic Sichuan Basin[J]. Natural Gas Industry,2009,29(5):59-62.
    [3]
    王世谦,陈更生,董大忠,等. 四川盆地下古生界页岩气藏形成条件与勘探前景[J]. 天然气工业,2009,29(5):51-58. Wang Shiqian,Chen Gengsheng,Dong Dazhong,et al. Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichuan Basin[J]. Natural Gas Industry,2009,29(5):51-58.
    [4]
    董大忠,程克明,王世谦,等. 页岩气资源评价方法及其在四川盆地的应用[J]. 天然气工业,2009,29(5):33-39. Dong Dazhong,Cheng Keming,Wang Shiqian,et al. An evaluation method of shale gas resource and its application in the Sichuan Basin[J]. Natural Gas Industry,2009,29(5):33-39.
    [5]
    王同,熊亮,徐猛,等. 川南地区下寒武统筇竹寺组页岩储层特征[J]. 石油实验地质,2016,38(2):197-203. Wang Tong,Xiong Liang,Xu Meng,et al. Shale reservoir characteristics of the Lower Cambrian Qiongzhusi Formation in the southern Sichuan Basin[J]. Petroleum Geology & Experiment,2016,38(2):197-203.
    [6]
    Demaison G J,Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin,1980,64(8):1179-1209.
    [7]
    Pedersen T F,Calvert S E. Anoxia vs. productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin,1990,74(4):454-466.
    [8]
    Wang Jianguo,Chen Daizhao,Yan Detian,et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology,2012,306/307:129-138.
    [9]
    Och L M,Shields-Zhou G A,Poulton S W,et al. Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province,South China[J]. Precambrian Research,2013,225:166-189.
    [10]
    Feng Lianjun,Li Chao,Huang Jing,et al. A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze platform,South China[J]. Precambrian Research,2014,246:123-133.
    [11]
    Jin Cengsheng,Li Chao,Algeo T J,et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (~529-514 Ma):Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters,2016,441:38-51.
    [12]
    Brasier M D. Background to the Cambrian explosion[J]. Journal of the Geological Society,1992,149(4):585-587.
    [13]
    Zhu Maoyan,Strauss H,Shields G A. From snowball earth to the Cambrian bioradiation:Calibration of Ediacaran-Cambrian earth history in South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):1-6.
    [14]
    李玉喜,乔德武,姜文利,等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报,2011,30(2/3):308-317. Li Yuxi,Qiao Dewu,Jiang Wenli,et al. Gas content of gas-bearing shale and its geological evaluation summary[J]. Geological Bulletin of China,2011,30(2/3):308-317.
    [15]
    罗超. 上扬子地区下寒武统牛蹄塘组页岩特征研究. 成都:成都理工大学,2014. Luo Chao. Geological characteristics of gas shale in the Lower Cambrian Niutitang Formation of the Upper Yangtze Platform. Chengdu:Chengdu University of Technology,2014.
    [16]
    Li Zhengxiang,Li Xianhua,Zhou Hanwen,et al. Grenvillian continental collision in South China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology,2002,30(2):163-166.
    [17]
    Li Zhengxiang,Zhang Linghua,Powell C M. South China in Rodinia:Part of the missing link between Australia-east Antarctica and Laurentia?[J]. Geology,1995,23(5):407-410.
    [18]
    Wang Jian,Li Zhengxiang. History of Neoproterozoic rift basins in South China:Implications for Rodinia break-up[J]. PreCambrian Research,2003,122(1/4):141-158.
    [19]
    Zhu Maoyan,Zhang Junming,Yang Aihua,et al. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform:An integrated approach[J]. Progress in Natural Science,2003,13(12):951-960.
    [20]
    Zhu Maoyan,Babcock L E,Peng Shanchi. Advances in Cambrian stratigraphy and paleontology:Integrating correlation techniques,paleobiology,taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld,2006,15(3/4):217-222.
    [21]
    赵元龙,杨洪,李勇,等. 贵州新元古代到寒武纪早期特异埋藏后生生物群及其研究意义[J]. 古生物学报,2008,47(4):405-418. Zhao Yuanlong,Yang Hong,Li Yong,et al. Exceptionally-preserved early metazoan biotas of Neoproterozoic-Cambrian in Guizhou and their implications:A brief introduction[J]. Acta Palaeontologica Sinica,2008,47(4):405-418.
    [22]
    Xu Lingang,Lehmann B,Mao Jingwen,et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China:Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology,2012,318/319:45-59.
    [23]
    杨兴莲,祝明金,朱露艳,等. 贵州金沙下寒武统牛蹄塘组中的高肌虫[J]. 高校地质学报,2009,15(3):296-303. Yang Xinglian,Zhu Mingjin,Zhu Luyan,et al. The bradoriida of the Niutitang Formation from traditional Lower Cambrian in Jinsha County,Guizhou Province[J]. Geological Journal of China Universities,2009,15(3):296-303.
    [24]
    Yang Xinglian,Zhao Yuanlong,Wu Weiyi,et al. Phragmodictya jinshaensis sp. nov.,a hexactinellid dictyosponge from the Cambrian of Jinsha,South China[J]. GFF,2014,136(1):309-313.
    [25]
    杨瑞东,毛家仁,张位华,等. 贵州早寒武世早期黑色页岩中生物化石保存及生态学研究[J]. 沉积学报,2004,22(4):664-671. Yang Ruidong,Mao Jiaren,Zhang Weihua,et al. Fossil preservation and palaeoecological research in Early Cambrian black shale[J]. Acta Sedimentologica Sinica,2004,22(4):664-671.
    [26]
    Xu Lingang,Lehmann B,Mao Jingwen,et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China:A reassessment[J]. Economic Geology,2011,106(3):511-522.
    [27]
    Chen Daizhao,Zhou Xiqiang,Fu Yong,et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova,2015,27(1):62-68.
    [28]
    Chen Daizhao,Wang Jianguo,Qing Hairou,et al. Hydrothermal venting activities in the Early Cambrian,South China:Petrolo-gical,geochronological and stable isotopic constraints[J]. Chemical Geology,2009,258(3/4):168-181.
    [29]
    Knoll A H,Carroll S B. Early animal evolution:Emerging views from comparative biology and geology[J]. Science,1999,284(5423):2129-2137.
    [30]
    朱茂炎. 动物的起源和寒武纪大爆发:来自中国的化石证据[J]. 古生物学报,2010,49(3):269-287. Zhu Maoyan. The origin and Cambrian explosion of animals:Fossil evidences from China[J]. Acta Palaeontologica Sinica,2010,49(3):269-287.
    [31]
    彭善池. 华南新的寒武纪生物地层序列和年代地层系统[J]. 科学通报,2009,54(18):2691-2698. Peng Shanchi. The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for South China[J]. Chinese Science Bulletin,2009,54(22):4161-4170.
    [32]
    Jones B,Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.
    [33]
    Wei Hengye,Chen Daizhao,Wang Jianguo,et al. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China:Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2012,353/355:73-86.
    [34]
    Dymond J,Suess E,Lyle M. Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J]. Paleoceanography,1992,7(2):163-181.
    [35]
    Francois R,Honjo S,Manganini S J,et al. Biogenic barium fluxes to the deep sea:Implications for paleoproductivity reconstruction[J]. Global Biogeochemical Cycles,1995,9(2):289-303.
    [36]
    Lyons T W,Werne J P,Hollander D J,et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin,Venezuela[J]. Chemical Geology,2003,195(1/4):131-157.
    [37]
    金承胜. 华南寒武纪早期海洋化学时空演化及其对早期动物演化的影响. 武汉:中国地质大学(武汉),2014. Jin Chengsheng. A preliminary study on spatiotemporal variability of ocean chemistry and its relationship with animal evolution in the Early Cambrian (Ca. 526-514Ma),South China. Wuhan:China University of Geosciences (Wuhan),2014.
    [38]
    Anbar A D. OCEANS:Elements and evolution[J]. Science,2008,322(5907):1481-1483.
    [39]
    Wille M,Nägler T F,Lehmann B,et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature,2008,453(7196):767-769.
    [40]
    吕炳全,王红罡,胡望水,等. 扬子地块东南古生代上升流沉积相及其与烃源岩的关系[J]. 海洋地质与第四纪地质,2004,24(4):29-35. Lü Bingquan,Wang Honggang,Hu Wangshui,et al. Relationship between Paleozoic upwelling facies and hydrocarbon in southeastern marginal Yangtze Block[J]. Marine Geology & Quaternary Geo-logy,2004,24(4):29-35. (编辑徐文明)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1158) PDF downloads(428) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return