XU Liangfa, MA Zhongliang, ZHENG Lunju, BAO Fang. Change of physical properties at different heating rates, time and water content for oil shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2018, 40(4): 545-550. doi: 10.11781/sysydz201804545
Citation: XU Liangfa, MA Zhongliang, ZHENG Lunju, BAO Fang. Change of physical properties at different heating rates, time and water content for oil shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2018, 40(4): 545-550. doi: 10.11781/sysydz201804545

Change of physical properties at different heating rates, time and water content for oil shale

doi: 10.11781/sysydz201804545
  • Received Date: 2018-01-14
  • Rev Recd Date: 2018-06-04
  • Publish Date: 2018-07-28
  • An oil shale in situ pyrolysis simulation experiment with different heating rates, heating time and water contents was carried out to assess the influences of these parameters on the physical properties of oil shale in situ conversion production. The physical properties of oil shale in situ conversion production were analyzed using nuclear magnetic resonance T2 spectra. The results showed that the slow heating rate (the increase of reaction time) was beneficial to the development of organic micro-pores, while the increase of heating rate was beneficial to the development of micro-cracks. With the increase of constant temperature time, the physical properties of oil shale can be improved, and small pores gradually develop into relatively larger pores. High-temperature water may be used as a catalyst, reactant and solvent to participate in the reaction. On the one hand, it is beneficial to react with organic matter to generate organic pores; on the other hand, high-temperature water may react with oil shale minerals, thus improving the physical properties of oil shale.

     

  • loading
  • [1]
    刘招君,杨虎林,董清水,等.中国油页岩[M].北京:石油工业出版社,2009. LIU Zhaojun,YANG Hulin,DONG Qingshui,et al.Oil shale in China[M].Beijing:Petroleum Industry Press,2009.
    [2]
    王红岩,赵群,刘洪林,等.中国油页岩资源分布及技术进展[M].北京:石油工业出版社,2013. WANG Hongyan,ZHAO Qun,LIU Honglin,et al.The distribution and advances in production technologies of oil shale in China[M].Beijing:Petroleum Industry Press,2013.
    [3]
    李隽,汤达祯,薛华庆,等.中国油页岩原位开采可行性初探[J].西南石油大学学报(自然科学版),2014,36(1):58-64. LI Jun,TANG Dazhen,XUE Huaqing,et al.Discission of oil shale in-situ conversion process in China[J].Journal of Southwest Petroleum University (Science & Technology Edition),2014,36(1):58-64.
    [4]
    中国能源矿产勘探开发现状[EB/OL].[2010-06-11].https://wenku.baidu.com/view/a021951614791711cc791736.html. The present situation of China's energy mineral exploration and development[EB/OL].[2010-06-11].https://wenku.baidu.com/view/a021951614791711cc791736.html.
    [5]
    李广友,马中良,郑家锡,等.油页岩不同温度原位热解物性变化核磁共振分析[J].石油实验地质,2016,38(3):402-406.

    LI Guangyou,MA Zhongliang,ZHENG Jiaxi,et al.NMR analysis of the physical change of oil shales during in situ pyrolysis at different temperatures[J].Petroleum Geology & Experiment,2016,38(3):402-406.
    [6]
    刘德勋,王红岩,郑德温,等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128-132.

    LIU Dexun,WANG Hongyan,ZHENG Dewen,et al.World progress of oil shale in-situ exploitation[J].Natural Gas Industry,2009,29(5):128-132.
    [7]
    汪友平,王益维,孟祥龙,等.美国油页岩原位开采技术与启示[J].石油钻采工艺,2013,35(6):55-59.

    WANG Youping,WANG Yiwei,MENG Xianglong,et al.Enlightenment of American's oil shale in-situ retorting technology[J].Oil Drilling & Production Technology,2013,35(6):55-59.
    [8]
    马中良,郑伦举,赵中熙.不同边界条件对油页岩原位转化开采的影响及启示[J].吉林大学学报(地球科学版),2017,47(2):431-441. MA Zhongliang,ZHENG Lunju,ZHAO Zhongxi.Influence and its revelation of oil shale in-situ mining simulation in different boundary conditions[J].Journal of Jilin University (Earth Science Edition),2017,47(2):431-441.
    [9]
    孙军昌,陈静平,杨正明,等.页岩储层岩芯核磁共振响应特征实验研究[J].科技导报,2012,30(14):25-30.

    SUN Junchang,CHEN Jingping,YANG Zhengming,et al.Experimental study of the NMR characteristics of shale reservoir rock[J].Science & Technology Review,2012,30(14):25-30.
    [10]
    王振林,毛志强,孙中春,等.致密油储层孔隙结构核磁共振测井评价方法[J].断块油气田,2017,24(6):783-787.

    WANG Zhenlin,MAO Zhiqiang,SUN Zhongchun,et al.Evaluation of pore structure using NMR logs for tight oil reservoirs[J].Fault-Block Oil and Gas Field,2017,24(6):783-787.
    [11]
    公言杰,柳少波,赵孟军,等.核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征[J].石油实验地质,2016,38(3):389-394.

    GONG Yanjie,LIU Shaobo,ZHAO Mengjun,et al.Characterization of micro pore throat radius distribution in tight oil reservoirs by NMR and high pressure mercury injection[J].Petroleum Geology & Experiment,2016,38(3):389-394.
    [12]
    周巨标.基于核磁共振技术的储层微观特征分类评价:以王龙庄油田阜宁组为例[J].山东科技大学学报(自然科学版),2016,35(2):8-15. ZHOU Jubiao.Reservoir characteristics and classification evaluation based on NMR technology:an example of funing formation in wang long zhuang oilfield[J].Journal of Shandong University of Science and Technology(Natural Science),2016,35(2):8-15.
    [13]
    马康,姜汉桥,李俊键,等.基于核磁共振的复杂断块油藏微观动用均衡程度实验[J].断块油气田,2016,23(6):745-749.

    MA Kang,JIANG Hanqiao,LI Junjian,et al.Experimental study on micro balanced development of complex fault-block reservoirs based on nuclear magnetic resonance[J].Fault-Block Oil and Gas Field,2016,23(6):745-749.
    [14]
    李扬,张凤生,李建玉,等.川中大安寨段致密灰岩储层核磁共振T2谱特征与解析[J].油气地质与采收率,2017,24(1):11-18,42. LI Yang,ZHANG Fengsheng,LI Jianyu,et al.Characterization and evaluation of NMR T2 spectrum of the tight limestone reservoir in the Daanzhai Formation,Central Sichuan Basin[J].Petroleum Geology and Recovery Efficiency,2017,24(1):11-18,42.
    [15]
    王翼君,崔刚,唐洪明,等.碳酸盐岩核磁共振实验研究现状[J].断块油气田,2016,23(6):818-824.

    WANG Yijun,CUI Gang,TANG Hongming,et al.Research status of nuclear magnetic resonance experiment in carbonate rock[J].Fault-Block Oil and Gas Field,2016,23(6):818-824.
    [16]
    于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4):211-220.

    YU Bingsong.Classification and characterization of gas shale pore system[J].Earth Science Frontiers,2013,20(4):211-220.
    [17]
    赵蕾.核磁共振在储层物性测定中的研究及应用[D].青岛:中国石油大学,2010. ZHAO Lei.Research and application of NMR in measurement of reservoir physical properties[D].Qingdao:China University of Petroleum,2010.
    [18]
    牛强,王志战,曾溅辉,等.2D NMR在泥页岩物性及流体评价中的应用探讨[J].波谱学杂志,2014,31(2):206-213.

    NIU Qiang,WANG Zhizhan,ZENG Jianhui,et al.Evaluating shale porosity and oil content with 2D NMR[J].Chinese Journal of Magnetic Resonance,2014,31(2):206-213.
    [19]
    李晓强.基于核磁共振的岩心分析实验及应用研究[D].成都:西南石油大学,2012. LI Xiaoqiang.Core analysis and application based on NMR technology[D].Chengdu:Southwest Petroleum University,2012.
    [20]
    MA Zhongliang,ZHENG Lunju,XU Xuhui,et al.Thermal simulation experiment of organic matter-rich shale and implication for organic pore formation and evolution[J].Petroleum Research,2017,2(4):347-354.
    [21]
    郑伦举,何生,秦建中,等.近临界特性的地层水及其对烃源岩生排烃过程的影响[J].地球科学(中国地质大学学报),2011,36(1):83-92. ZHENG Lunju,HE Sheng,QIN Jianzhong,et al.Formation water of near-critical properties and its effects on the processes of hydrocarbon generation and expulsion[J].Earth Science(Journal of China University of Geosciences),2011,36(1):83-92.
    [22]
    马跃,李术元,王娟,等.水介质条件下油页岩热解机理研究[J].燃料化学学报,2011,39(12):881-886.

    MA Yue,LI Shuyuan,WANG Juan,et al.Mechanism of oil shale pyrolysis under high pressure water[J].Journal of Fuel Chemistry and Technology,2011,39(12):881-886.
    [23]
    DENG Sunhua,WANG Zhijun,GU Qiang,et al.Extracting hydrocarbons from Huadian oil shale by sub-critical water[J].Fuel Processing Technology,2011,92(5):1062-1067.
    [24]
    姚博明.稠油油田注蒸汽化学辅助水热裂解技术提高采收率研究[D].大庆:东北石油大学,2016. YAO Boming.Research on the technology of steam injection and chemical auxiliary water thermal cracking to improve the recovry in heavy oil field[D].Daqing:Northeast Petroleum University,2016.
    [25]
    钟立国.水热裂解开采稠油关键技术研究[D].大庆:大庆石油学院,2005. ZHONG Liguo.Study on key technologies to recover heavy oil by aquathermolysis[D].Daqing:Daqing Petroleum Institute,2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2624) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return