ZHANG Yinghan, LI Zhuo, LIU Dongdong, GAO Fenglin, JIANG Zhenxue, LIANG Zhikai, YANG Dongxu, YU Hailong. Lithofacies characteristics and impact on pore structure of the Shahezi Formation shale, Changling Fault Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(1): 142-148. doi: 10.11781/sysydz201901142
Citation: ZHANG Yinghan, LI Zhuo, LIU Dongdong, GAO Fenglin, JIANG Zhenxue, LIANG Zhikai, YANG Dongxu, YU Hailong. Lithofacies characteristics and impact on pore structure of the Shahezi Formation shale, Changling Fault Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(1): 142-148. doi: 10.11781/sysydz201901142

Lithofacies characteristics and impact on pore structure of the Shahezi Formation shale, Changling Fault Depression, Songliao Basin

doi: 10.11781/sysydz201901142
  • Received Date: 2018-09-02
  • Rev Recd Date: 2018-11-15
  • Publish Date: 2019-01-28
  • A lithofacies classification was established based on TOC and XRD data on cores of the Shahezi Formation in the Changling Fault Depression of the Songliao Basin. There are 7 lithofacies in the study area. Scanning electron microscopy, CO2 and N2 adsorption and high pressure mercury intrusion experiments were applied to quantitatively characterize pore structure. Shale pores were developed in the Shahezi Formation, and the pore types of different lithofacies were also different. Organic matter pores were mainly developed in argillaceous shale. Shale pore size exhibited a multi-peak distribution. Mesopores were the main contributors to pore volume, accounting for an average of 50.9%. Micropores were the main contributors to specific surface area, accounting for an average of 67.8%. The development of micropores was mainly controlled by clay minerals, the development of mesopores was controlled by carbonate minerals, while the development of macropores was controlled by the combination of siliceous and clay minerals. The organic-rich argillaceous rock influenced the surface area and pore volume, and played a major role in controlling shale pore development of the Shahezi Formation.

     

  • loading
  • [1]
    殷鹏飞,柳广弟,刘成林,等.中美页岩气资源评价的现状及启示[J].当代石油石化,2011(11):7-12. YIN Pengfei,LIU Guangdi,LIU Chenglin,et al.The status of Sino-American shale gas resources evaluation and its enlightenment[J].Petroleum & Petrochemical Today,2011(11):7-12.
    [2]
    何发岐,朱彤.陆相页岩气突破和建产的有利目标:以四川盆地下侏罗统为例[J].石油实验地质,2012,34(3):246-251.

    HE Faqi,ZHU Tong.Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic,Sichuan Basin[J].Petroleum Geology & Experiment,2012,34(3):246-251.
    [3]
    邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.

    ZOU Caineng,DONG Dazhong,WANG Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
    [4]
    蒋裕强,宋益滔,漆麟,等.中国海相页岩岩相精细划分及测井预测:以四川盆地南部威远地区龙马溪组为例[J].地学前缘,2016,23(1):107-118.

    JIANG Yuqiang,SONG Yitao,QI Lin,et al.Fine lithofacies of China's marine shale and its logging prediction:a case study of the Lower Silurian Longmaxi marine shale in Weiyuan area,southern Sichuan Basin,China[J].Earth Science Frontiers,2016,23(1):107-118.
    [5]
    耿一凯,金振奎,赵建华,等.页岩储层孔隙类型控制因素研究:以川东焦石坝地区龙马溪组为例[J].石油实验地质,2017,39(1):71-78.

    GENG Yikai,JIN Zhenkui,ZHAO Jianhua,et al.Controlling factors of pore types in shale reservoirs:a case study from the Longmaxi Formation in Jiaoshiba area,eastern Sichuan Basin[J].Petroleum Geology & Experiment,2017,39(1):71-78.
    [6]
    WANG Yuman,DONG Dazhong,HUANG Jinjiang,et al.Guan-yinqiao Member lithofacies of the Upper Ordovician Wufeng Formation around the Sichuan Basin and the significance to shale gas plays,SW China[J].Petroleum Exploration and Development,2016,43(1):45-53.
    [7]
    YANG Xiaoqun,FAN Tailiang,WU Yue.Lithofacies and cyclicity of the Lower Cambrian Niutitang shale in the Mayang Basin of western Hunan,South China[J].Journal of Natural Gas Science and Engineering,2016,28:74-86.
    [8]
    QIU Zhen,TAO Huifei,ZOU Caineng,et al.Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin,NW China[J].Journal of PetroleumScience and Engineering,2016,140:97-107.
    [9]
    刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.

    LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimentary rock in the lower Es3 member,Dongying sag[J].Petroleum Geo-logy and Recovery Efficiency,2017,24(1):1-10.
    [10]
    WU Lanyu,HU Dongfeng,LU Yongchao,et al.Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin,SW China[J].Petroleum Exploration and Development,2016,43(2):208-217.
    [11]
    WANG Guochang,CARR T R.Methodology of organic-rich shale lithofacies identi fication and prediction:a case study from marcellus shale in the Appalachian Basin[J].Computers & Geosciences,2012,49:151-163.
    [12]
    邓涛,李勇.龙门山前陆盆地南段须五段页岩气富集条件及有利区评价[J].特种油气藏,2018,25(4):51-56.

    DENG Tao,LI Yong.Shale gas enrichment condition and favorable area evaluation of the Xu5 Member in the southern section of Longmenshan foreland basin[J].Special Oil & Gas Reservoirs,2018,25(4):51-56.
    [13]
    杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.

    YANG Feng,NING Zhengfu,HU Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
    [14]
    耿一凯,金振奎,赵建华,等.页岩储层孔隙类型控制因素研究:以川东焦石坝地区龙马溪组为例[J].石油实验地质,2017,39(1):71-78.

    GENG Yikai,JIN Zhenkui,ZHAO Jianhua,et al.Controlling factors of pore types in shale reservoirs:A case study from the Longmaxi Formation in Jiaoshiba area,eastern Sichuan Basin[J].Petroleum Geology & Experiment,2017,39(1):71-78.
    [15]
    LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
    [16]
    MILLIKEN K L,RUDNICKI M,AWWILLER D N,et al.Organic matter hosted pore system,Marcellus Formation (Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
    [17]
    GUO Xuejing,SHEN Yinghao,HE Shunli,et al.Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis:a case study for a lacustrine shale reservoir in the Triassic Chang 7 Member,Ordos Basin,China[J].Journal of Natural Gas Science and Engineering,2015,27:1630-1640.
    [18]
    钱门辉,蒋启贵,黎茂稳,等.湖相页岩不同赋存状态的可溶有机质定量表征[J].石油实验地质,2017,39(2):278-286.

    QIAN Menhui,JIANG Qigui,LI Maowen,et al.Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J].Petroleum Geology & Experiment,2017,39(2):278-286.
    [19]
    SCHERDEL C,REICHENAUER G,WIENER M.Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-,BET and t-plot[J].Microporous and Mesoporous Materials,2010,132(3):572-575.
    [20]
    LABANI M M,REZAEE R,SAEEDI A,et al.Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption,gas expansion and mercury porosimetry:a case study from the Perth and Canning Basins,Western Australia[J].Journal of Petroleum Science and Engineering,2013,112:7-16.
    [21]
    MOSHER K,HE Jiajun,LIU Yangyang,et al.Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J].International Journal of Coal Geology,2013,109-110:36-44.
    [22]
    CLARKSON C R,SOLANO N,BUSTIN R M,et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J].Fuel,2013,103:606-616.
    [23]
    CHALMERS G R,BUSTIN R M,POWER I M,.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
    [24]
    董大忠,邹才能,李建忠,等,.页岩气资源潜力与勘探开发前景[J].地质通报,2011,30(2):324-336.

    DONG Dazhong,ZOU Caineng,LI Jiangzhong,et al.Resource potential,exploration and development prospect of shale gas in the whole world[J].Geological Bulletin of China,2011,30(2):324-336.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1470) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return