JIANG Yongping. Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(2): 274-279. doi: 10.11781/sysydz201902274
Citation: JIANG Yongping. Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(2): 274-279. doi: 10.11781/sysydz201902274

Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding

doi: 10.11781/sysydz201902274
  • Received Date: 2018-10-24
  • Rev Recd Date: 2019-02-25
  • Publish Date: 2019-03-28
  • A CO2 composite flooding method was proposed for remaining oil exploitation and achieved significant effects in pilot well tests in order to improve residual oil recovery efficiency in complex fault block oilfields during high water cut period. There are few related studies on the microscopic mechanism of CO2 composite flooding, and the basic research in this field is urgently demanded. Based on the CT scanning results, combined with the actual development of reservoir, it was clear that the drop-like and film-like residual oil are two types of remain-ing oil that were difficult to recover. A dissolved oil droplet model and a stripped oil film model were constructed and simulated using a molecular dynamics method. The simulation results of the dissolved oil droplet method showed that CO2 first diffused into oil droplets and increased their volume, and then the oil droplet molecules gradually dissolved into the oil displacement system. The molecular dynamics simulation results of the stripped oil film showed that CO2 first formed diffusion channels in the oil phase, and then preferentially passed through the diffusion channels to the rock surface. CO2 formed hydrogen bonds on the surface and generated adsorption.

     

  • [1]
    RUDYK S,SPIROV P,AL-HAJRI R,et al.Supercritical carbon dioxide extraction of oil sand enhanced by water and alcohols as co-solvents[J].Journal of CO2 Utilization,2017,17:90-98.
    [2]
    LIU Bing,SHI Junqin,WANG Muhan,et al.Reduction in interfacial tension of water-oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation[J].The Journal of Supercritical Fluids,2016,111:171-178.
    [3]
    HELALEH A H,ALIZADEH M.Performance prediction model of miscible surfactant-CO2 displacement in porous media using support vector machine regression with parameters selected by ant colony optimization[J].Journal of Natural Gas Science and Engineering,2016,30:388-404.
    [4]
    孙艳阁.表面活性剂多元复配低张力泡沫驱油体系的分子设计及应用性能研究[D].济南:山东大学,2016. SUN Yange.Molecular design and performance study of foam flooding systems with ultralow interfacial tension formed from multiple surfactant mixtures[D].Jinan:Shandong University,2016.
    [5]
    徐军.3-(N,N-二甲基十二烷基胺)-2-羟基-丙基磺酸溶液性质、模拟及应用研究[D].济南:山东大学,2007. XU Jun.Investigation into properties and behaviors of 3-(n,n-dimethyldodeecylammonio)-2-hydroxypropopanesulfonte[D].Jinan:Shandong University,2007.
    [6]
    梁向东,银建中.实验与MD模拟探究基于LS-45的超临界CO2微乳液结构[J].应用科技,2017,44(4):70-74.

    LIANG Xiangdong,YIN Jianzhong. Study on micro-structure of scCO2 microemulsion with LS-45 by experiment and molecular dynamics simulation method[J].Applied Science and Techno-logy,2017,44(4):70-74.
    [7]
    乔贵民.表面活性剂改变亲油岩石润湿性的分子模拟研究[D].青岛:中国石油大学(华东),2012. QIAO Guimin.Molecular simulation of wettability alteration of oil-wet rock using surfactants[D].Qingdao:China University of Petroleum (East China),2012.
    [8]
    牟雷.纳米尺度下液体的流动机理研究进展[J].断块油气田,2017,24(5):666-669.

    MU Lei.Advances in nanoscale liquid flow mechanisms[J].Fault-block Oil & Gas Field,2017,24(5):666-669.
    [9]
    蒲万芬,季晓靖,金发扬,等.表面活性剂与油相动态界面张力影响因素研究[J].化学研究与应用,2015,27(11):1655-1659.

    PU Wanfen,JI Xiaojing,JIN Fayang,et al.Study on dynamic interfacial tension of surfactants with oil phase[J].Chemical Research and Application,2015,27(11):1655-1659.
    [10]
    郭宇.耐温抗盐型复合表面活性剂驱油体系的合成及应用[J].断块油气田,2018,25(2):258-261.

    GUO Yu.Synthesis and application of oil displacement system of temperature-resistant and salt-resistant high-efficiency composite surfactant[J].Fault-block Oil & Gas Field,2018,25(2):258-261.
    [11]
    吴伟.特高温中低渗透油藏乳液表面活性剂驱提高采收率技术[J].油气地质与采收率,2018,25(2):72-76,82. WU Wei.Enhanced oil recovery technology of emulsion-surfactant flooding for extra-high temperature and mid-low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(2):72-76,82.
    [12]
    倪军,王成俊,高怡文.特低渗油藏表面活性剂驱潜力评价新模型[J].特种油气藏,2018,25(1):68-72.

    NI Jun,WANG Chengjun,GAO Yiwen.A new evaluation model for the surfactant flooding potential in ultra-low permeability reservoir[J].Special Oil and Gas Reservoirs,2018,25(1):68-72.
    [13]
    王磊.超临界二氧化碳剥蚀原油机理的分子模拟研究[D].青岛:中国石油大学(华东),2014. WANG Lei.Molecular simulation of oil detachment and erosion mechanism by supercritical carbon dioxide[D].Qingdao:China University of Petroleum (East China),2014.
  • Relative Articles

    [1]WANG Ziqiang, GE Hongkui, GUO Huiying, ZHOU Hao, ZHANG Yuankai. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092
    [2]Wang Dan, Zhao Ruiming, Cui Maolei, Zhang Xiaoyu, Wang Na. Solubility of CO2 in crude oil and high-salinity formation water under high temperature and high pressure: Taking the Triassic reservoirs in a certain area of Tahe oilfield as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(S1): 40-43. doi: 10.11781/sysydz2017S1040
    [3]Liu Peiliang, Ding Minjiang, Wang Guocheng, Xu Yan. Application of “sedimentary facies controlled sand body” theory in remaining oil tapping of sandstone reservoirs with bottom water in the Tahe Oil Field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(S1): 20-22. doi: 10.11781/sysydz2015S1020
    [4]Zhang Kui, Xu Shisheng. Application of residual oil saturation logging data in Yakela Condensate Gas Field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(S1): 46-50. doi: 10.11781/sysydz2015S1046
    [5]Yang Song, Liu Peiliang, He Chang, Li Dandan. Main controlling factors for remaining oils in horizontal wells in sandstone reservoirs with bottom water in the Tahe Oil Field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(S1): 23-28. doi: 10.11781/sysydz2015S1023
    [6]Wang Jun, Meng Xiaohai, Wang Weimin, Liu Naigui. 2D NMR distribution function for microscale remaining oil[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(5): 654-659. doi: 10.11781/sysydz201505654
    [7]Zhang Hui, Zhang Kui. Residual oil in Yakela Cretaceous condensate gas reservoir[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(S1): 51-54. doi: 10.11781/sysydz2015S1051
    [8]Li Chenggang, Zhang Wei, Cheng Hong, Jiang Lin, Chen Bintao, Ma Guojian, Wang You, Zhang Zhunxing. Residual oil distribution prediction and potential tapping in fractured-vuggy reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(s1): 56-60. doi: 10.11781/sysydz2014S1056
    [9]Guo Dianbin, Xu Huaimin. Laboratory experiments of CO2 flooding in deep-buried high-pressure low-permeability reservoirs:A case study of block Hu96 in Zhongyuan Oilfield[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(1): 102-105. doi: 10.11781/sysydz201401102
    [10]Chen Dongbo, Xu Gang, Zheng Xiaojie. Tapping of remaining oil in compound perforating interlayers in Tahe Oilfield[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(s1): 120-122. doi: 10.11781/sysydz2014S1120
    [11]Han Xuehui, Yang Long, Wang Hongliang, Wang Xueliang, Fang Tao, Zhang Juanjuan. A practical core cleaning method based on CO2 dissolved gas drive[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013, 35(1): 111-114. doi: 10.11781/sysydz201301111
    [12]Wu Zhiliang, Zhang Yong, Tang Renxuan. APPLICATION OF PERFORMANCE MONITORING TECHNIQUE FOR CO2 DISPLACEMENT IN COMPLEX FAULT BLOCK OILFIELD[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2009, 31(5): 542-546. doi: 10.11781/sysydz200905542
    [13]He Dawei, Mao Xiaoping, Yang Jiaming, Wu Jingfu, Pan Mingtai. DEVELOPMENT OF PETROLEUM POOL-FORMING DYNAMICS SIMULATION AND EVALUATION SYSTEM[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2007, 29(5): 527-530. doi: 10.11781/sysydz200705527
    [14]Li Rirong. THE DEVELOPMENT AND PROSPECT IN THE SIMULATION OF PETROLEUM POOL-FORMING DYNAMICS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2006, 28(1): 78-82. doi: 10.11781/sysydz200601078
    [15]YIN Tai-ju, ZHANG Chang-ming, ZHAO Hong-jing, PENG Hai-jun. PREDICTION OF RESIDUAL OIL DISTRIBUTION IN COMPLEX FAULT-BLOCK DISTRICTS DURING HIGH WATER-BEARING PERIODS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2004, 26(3): 267-272. doi: 10.11781/sysydz200403267
    [16]Zhou Zuyi, R Donelick. MULTIKINETIC MODELLING FOR TIME-TEMPERATURE HISTORY BASED ON APATITE FISSION TRACK DATA[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2001, 23(1): 97-102. doi: 10.11781/sysydz200101097
    [17]WU Chonglong, MAO Xiaoping, WANG Xiepei, YANG Jiaming, WU Jingfu, HE Dawei. MODEL CONSTRUCTION AND SOFTWARE DEVELOPMENT OF 3-D HYDROCARBON POOL-FORMING DYNAMICS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2001, 23(3): 301-311. doi: 10.11781/sysydz200103301
    [18]XIE Cong-jiao, AI Jing-xu, LI Xi-yu. AN APPROACH TO THE TECHNICAL ECONOMIC RESEARCH OF MINOR-LAYER RESIDUAL OIL[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2000, 22(2): 180-183. doi: 10.11781/sysydz200002180
    [19]Wu Chonglong, Wang Xiepei, Mao Xiaoping, He Guangyu, Liu Haibin, Yang Jiaming, Wu Jingfu. THE CONCEPT AND PRINCIPLES OF PETROLEUM SYSTEMS DYNAMICS——NEW THINKING AND METHOD OF BASIN MODELING AND PETROLEUM POOL FORMING DYNAMICS MODELING[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1998, 20(4): 319-327. doi: 10.11781/sysydz199804319
  • Cited by

    Periodical cited type(19)

    1. 吕晓聪,刘慧卿,王敬,东晓虎,拜杰,沈旭东. 杂质气体对二氧化碳在废弃气藏咸水层埋存的影响. 油气地质与采收率. 2023(02): 153-161 .
    2. 廖松林,夏阳,崔轶男,刘方志,曹胜江,汤勇. 超低渗油藏水平井注CO_2多周期吞吐原油性质变化规律研究. 油气藏评价与开发. 2022(05): 784-793 .
    3. 陈亮. 断块油藏二氧化碳驱油相对渗透压力模拟研究. 化工机械. 2022(06): 887-892 .
    4. 曹小朋,冯其红,杨勇,王森,康元勇,张传宝. CO_2-原油混相带运移规律及其对开发效果的影响. 油气地质与采收率. 2021(01): 137-143+2 .
    5. 汪周华,赵华臻,朱光亚,李茜瑶,郭平,方全堂. 孔隙型生物礁灰岩油藏水驱剩余油赋存特征. 断块油气田. 2021(03): 392-396 .
    6. 赵云海,王健,黄伟豪,张莉伟,彭琦林,杜红. 低渗透油藏纳米微球强化CO_2泡沫体系控制气窜实验. 新疆石油地质. 2021(04): 480-486 .
    7. 李美俊,刘晓强,韩秋雅,肖洪,方镕慧,何大祥,高志伟. 分子模拟在油气地球化学中的应用研究进展. 石油与天然气地质. 2021(04): 919-930 .
    8. 郑文龙. 低渗透油藏CO_2驱固相沉积规律实验研究. 油气地质与采收率. 2021(05): 131-136 .
    9. 吴公益,赵梓平,吴波. 苏北不同类型油藏CO_2驱开发模式及经济效益评价. 油气藏评价与开发. 2021(06): 864-870 .
    10. 张艳梅,万文胜,李琛,罗鸿成,刘衍彤,张会利,张瑞雪. 彩9井区西山窑组特高含水油藏CO_2混相驱先导试验. 特种油气藏. 2021(06): 121-128 .
    11. 李海波,李永会,姜瑜,陈凤,吕世瑶,展宏洋. 多层砂砾岩油藏注烟道气提高采收率技术. 断块油气田. 2020(01): 104-108 .
    12. 李松岩,王麟,韩瑞,李论,李爱英,李兆敏. 裂缝性致密油藏超临界CO_2泡沫驱规律实验研究. 油气地质与采收率. 2020(01): 29-35 .
    13. 邹建栋,廖新维,张可,吴佳琦,穆凌雨,袁舟. 不同油藏压力下CO_2驱最小混相压力实验研究. 油气地质与采收率. 2020(01): 36-44 .
    14. 邓宏伟. 超深层低渗透稠油CO_2增溶降黏体系研发与应用. 油气地质与采收率. 2020(01): 81-88 .
    15. 鞠斌山,于金彪,吕广忠,曹伟东. 低渗透油藏CO_2驱油数值模拟方法与应用. 油气地质与采收率. 2020(01): 126-133 .
    16. 程玉桥,冯喆,牛春荣,杨杨,路双,赵文辉. 驱油用功能单体笼型多面体低聚倍半硅氧烷的设计合成与应用研究进展. 油气地质与采收率. 2020(02): 87-97 .
    17. 金忠康,王智林,毛超琪. 低渗透M油藏CO_2非混相驱主控机理及应用. 油气藏评价与开发. 2020(03): 68-74 .
    18. 李二庭,蒋宜勤,林莉莉,迪丽达尔·肉孜,谢礼科,周妮,安科. 高温高压油藏井壁沉淀物成因研究——以准噶尔盆地高探1井为例. 石油实验地质. 2020(06): 965-971 . 本站查看
    19. 苏玉亮,陈征,唐梅荣,李蕾,范理尧,张矿生. 致密储层不同驱替方式下超临界CO_2蓄能返排效果实验研究. 油气地质与采收率. 2020(05): 79-85 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1271) PDF downloads(138) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return