ZHAO Li, LIAO Zongting, XU Xuhui, FANG Chengming, LU Jianlin. Physical modeling of thrusting structure zonation in front of an intracontinental orogen[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 871-878. doi: 10.11781/sysydz201906871
Citation: ZHAO Li, LIAO Zongting, XU Xuhui, FANG Chengming, LU Jianlin. Physical modeling of thrusting structure zonation in front of an intracontinental orogen[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 871-878. doi: 10.11781/sysydz201906871

Physical modeling of thrusting structure zonation in front of an intracontinental orogen

doi: 10.11781/sysydz201906871
  • Received Date: 2019-07-25
  • Rev Recd Date: 2019-10-17
  • Publish Date: 2019-11-28
  • Existing experimental models do not simulate complete deformation zones, and do not totally match with the background of the composite intracontinental thrust belt in China. This work simulated the zonal characteristics in thrust structures and the reverse fault evolution in the transitional zone by building a "compression-collision" model which has rheological heterogeneity in vertical and horizontal directions. The geometric analysis shows that the improved model can simulate the complete deformation zones. The order is thick-skinned zone, transitional zone and thin-skinned zone from hinterland to foreland, which correspond to the orogen, thrust belt and basin, respectively. Moreover, fault development in the experimental model corresponds well with the geolo-gical model. The Kinematic analysis shows that the development of reverse faults in the transitional zone has gone through three stages:brittle deformation, ductile-brittle deformation and ductile deformation, but the evolution of thrust faults varies with the presence or absence of a detachment layer. Besides, the small initial fracture angle and short evolution time are the controls for the formation of thrust belts in which the dip angle of the front thrust fault is less than that of the back one.

     

  • loading
  • [1]
    MCCLAY K R,WHITEHOUSE P S,DOOLEY T,et al.3D evolution of fold and thrust belts formed by oblique convergence[J].Marine and Petroleum Geology,2004,21(7):857-877.
    [2]
    MALAVIEILLE J,KONSTANTINOVSKAYA E.Impact of surface processes on the growth of orogenic wedges:insights from analog models and case studies[J].Geotectonics,2010,44(6):541-558.
    [3]
    GRAVELEAU F,MALAVIEILLE J,DOMINGUEZ S.Experimental modelling of orogenic wedge:a review[J].Tectonophysics,2012,538-540:1-66.
    [4]
    KOYI H,NILFOUROUSHAN F,HESSAMI K.Modelling role of basement block rotation and strike-slip faulting on structural pattern in cover units of fold-and-thrust belts[J].Geological Magazine,2016,153(5/6):827-844.
    [5]
    SCHREURS G,BUITER S J H,BOUTELIER D,et al.Analogue benchmarks of shortening and extension experiments[M]//BUITER S J H,SCHREURS G.Analogue and numerical modelling of crustal-scale processes. London:Geological Society Special Publications,2006,253(1):1-27.
    [6]
    CRUZ L,MALINSKI J,WILSON A,et al.Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox[J].Journal of Geophysical Research,2010,115(B9):B09404.
    [7]
    NILFOUROUSHAN F,PYSKLYWEC R,CRUDEN A.Sensitivity analysis of numerical scaled models of fold-and-thrust belts to gra-nular material cohesion variation and comparison with analog experiments[J].Tectonophysics,2012,526/529:196-206.
    [8]
    LUTH S,WILLINGSHOFER E,SOKOUTIS D,et al.Does subduction polarity changes below the Alps? Inferences from analogue modelling[J].Tectonophysics,2013,582:140-161.
    [9]
    COTTON J T,KOYI H A.Modeling of thrust fronts above ductile and frictional detachments:application to structures in the salt range and Potwar Plateau,Pakistan[J].GSA Bulletin,2000,112(3):351-363.
    [10]
    COSTA E,VENDEVILLE B C.Experimental insights on the geo-metry and kinematics of fold-and-thrust belts above weak,viscous evaporitic décollement[J].Journal of Structural Geology,2002,24(11):1729-1739.
    [11]
    WU Zhenyun,YIN Hongwei,WANG Xin,et al.Characteristics and deformation mechanism of salt-related structures in the western Kuqa Depression,Tarim Basin:insights from scaled sandbox modeling[J].Tectonophysics,2014,612/613:81-96.
    [12]
    谢会文,吴珍云,能源,等.同构造沉积速率对先存被动盐底辟挤压变形的影响:库车坳陷西秋里塔格构造带盐构造分析及物理模拟[J].高校地质学报,2014,20(4):611-622.

    XIE Huiwen,WU Zhenyun,NENG Yuan,et al.The influence of the syn-kinematic depositional rate on the compressional deformation of pre-existing passive salt diapir:the analysis and analogue modeling of salt structures in the Western Qiulitage Structural Belt,Kuqa Depression[J].Geological Journal of China Universities,2014,20(4):611-622.
    [13]
    尹宏伟,王哲,汪新,等.库车前陆盆地新生代盐构造特征及形成机制:物理模拟和讨论[J].高校地质学报,2011,17(2):308-317.

    YIN Hongwei,WANG Zhe,WANG Xin,et al.Characteristics and mechanics of Cenozoic salt-related structures in Kuqa Foreland Basins:insights from physical modeling and discussion[J].Geolo-gical Journal of China Universities,2011,17(2):308-317.
    [14]
    徐旭辉,方成名,刘金连,等.中国中西部山前冲断变形结构分带模式与油气[J].石油实验地质,2019,41(6):XU Xuhui,FANG Chengming,LIU Jinlian,et al.Deformation zoning model of piedmont thrust,western China,and its petroleum response[J].Petroleum Geology & Experiment,2019,41(6):
    [15]
    方成名,赵利.复合陆内山前冲断构造转换类型及其成因[J].石油实验地质,2019,41(6):FANG Chengming,ZHAO Li.Compound intracontinental piedmont thrust structure transformation and its formation mechanisms[J].Petroleum Geology & Experiment,2019,41(6):
    [16]
    单家增,李继亮,肖文交.陆-陆碰撞造山带动力学成因机制的物理模拟实验[J].地学前缘,1999,6(4):397-406.

    SHAN Jiazeng,LI Jiliang,XIAO Wenjiao.Physical model experiments of dynamic mechanism on continent-continent collision[J].Earth Science Frontiers,1999,6(4):397-406.
    [17]
    汪新,王招明,谢会文,等.塔里木库车坳陷新生代盐构造解析及其变形模拟[J].中国科学(地球科学),2010,40(12):1655-1668. WANG Xin,WANG Zhaoming,XIE Huiwen,et al.Cenozoic salt tectonics and physical models in the Kuqa Depression of Tarim Basin,China[J].Science China(Earth Sciences),2010,40(12):1655-1668.
    [18]
    于福生,张芳峰,杨长清,等.龙门山前缘关口断裂典型构造剖面的物理模拟实验及其变形主控因素研究[J].大地构造与成矿学,2010,34(2):147-158.

    YU Fusheng,ZHANG Fangfeng,YANG Changqing,et al.Physical simulation and major deformation-controlling factors of typical structural sections for Guankou Fault in the front of Longmen mountains[J].Geotectonica et Metallogenia,2010,34(2):147-158.
    [19]
    BALLY A W,SNELSON S.Realms of subsidence[M]//MIALL A D.Facts and principles of world petroleum occurrence.Calgary,Alta:Canadian Society of Petroleum Geologists,1980:9-75.
    [20]
    DICKINSON W R.Plate tectonics and sedimentation[M]//DICKINSON W R.Tectonics and sedimentation.Tulsa:Special Publication Society of Economic Paleontologists and Mineralogists,1974,22:1-27.
    [21]
    LU Huafu,HOWELL D G,JIA Dong,et al.Rejuvenation of the Kuqa Foreland Basin,northern flank of the Tarim Basin,Northwest China[J].International Geology Review,1994,36(12):1151-1158.
    [22]
    罗志立.试论中国型(C-型)冲断带及其油气勘探问题[J].石油与天然气地质,1984,5(4):315-324.

    LUO Zhili.A preliminary approach on C-subduction and its hydrocarbon prospecting[J].Oil & Gas Geology,1984,5(4):315-324.
    [23]
    GRAHAM S A,HENDRIX M S,WANG L B,et al.Collisional successor basins of Western China:impact of tectonic inheri-tance on sand composition[J].GSA Bulletin,1993,105(3):323-344.
    [24]
    何登发,吕修祥,林永汉,等.前陆盆地分析[M].北京:石油工业出版社,1996:203-210. HE Dengfa,LV Xiuxiang,LIN Yonghan,et al.Foreland basin analysis[M].Beijing:Petroleum Industry Press,1996:203-210.
    [25]
    刘绍文,王良书,贾承造,等.中国中西部盆地区岩石圈热-流变学结构及其对前陆盆地成因演化的意义[J].地学前缘,2008,15(3):113-122.

    LIU Shaowen,WANG Liangshu,JIA Chengzao,et al.Thermor-heological structure of continental lithosphere beneath major basins in Central-Western China:implications for foreland basin formation[J].Earth Science Frontiers,2008,15(3):113-122.
    [26]
    GUO Xiaoyu,GAO Rui,KELLER G R,et al.Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J].Earth and Planetary Science Letters,2013,379:72-80.
    [27]
    BYERLEE J.Friction of rocks[J].Pure and Applied Geophysics,1978,116(4/5):615-626.
    [28]
    VENDEVILLE B C,JACKSON M P A.The rise of diapirs during thin-skinned extension[J].Marine and Petroleum Geology,1992,9(4):331-354.
    [29]
    FARZIPOUR-SAEIN A,KOYI H.Effect of lateral thickness variation of an intermediate decollement on the propagation of deformation front in the Lurestan and Izeh zones of the Zagros Fold-Thrust Belt,insights from analogue modeling[J].Journal of Structural Geology,2014,65:17-32.
    [30]
    杨少敏,李杰,王琪.GPS研究天山现今变形与断层活动[J].中国科学(D辑地球科学),2008,38(7):872-880. YANG Shaomin,LI Jie,WANG Qi.The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations[J].Science in China(Series D Earth Sciences),2008,51(8):1064-1080.
    [31]
    SUPPE J,CONNORS C,ZHANG Yikun.Shear fault-bend folding[M]//MCCLAY K R.Thrust tectonics and hydrocarbon systems:AAPG memoir 82.Tulsa:AAPG,2004:303-323.
    [32]
    胡建中,谭应佳,张平,等.塔里木盆地西南缘山前带逆冲推覆构造特征[J].地学前缘,2008,15(2):222-231.

    HU Jianzhong,TAN Yingjia,ZHANG Ping,et al.Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim Basin[J].Earth Science Frontiers,2008, 15(2):222-231.
    [33]
    KAUS B J P.Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation[J].Tectonophysics,2010,484(1/4):36-37.
    [34]
    黄光明,王岳军,赵勇刚,等.大巴山前陆冲断带构造样式和演化过程的数值模拟[J].地质学报,2016,90(4):653-668.

    HUANG Guangming,WANG Yuejun,ZHAO Yonggang,et al.Numerical simulation of structural styles and evolution of the Daba Shan Foreland Thrust Belt[J].Acta Geologica Sinica,2016,90(4):653-668.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (560) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return