Volume 42 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
LIU Zengqin, GUO Shaobin. Reservoir characteristics of high clay content and microporous tight litharenites in marine-continental transitional environments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(2): 223-232. doi: 10.11781/sysydz202002223
Citation: LIU Zengqin, GUO Shaobin. Reservoir characteristics of high clay content and microporous tight litharenites in marine-continental transitional environments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(2): 223-232. doi: 10.11781/sysydz202002223

Reservoir characteristics of high clay content and microporous tight litharenites in marine-continental transitional environments

doi: 10.11781/sysydz202002223
  • Received Date: 2019-11-29
  • Rev Recd Date: 2020-01-16
  • Publish Date: 2020-03-28
  • The resource potentials for the exploration and development of tight sandstone gas, shale gas, and coalbed gas in marine-continental transitional environments are very attractive. However, previous studies have mostly focused on the geological and geochemical characteristics of marine-continental transitional shales and coals, and less attention has been paid to the associated tight sandstones. This paper takes the sandstones in the west Guizhou as an example. The Longtan marine-continental transitional tight sandstones have been investigated using various techniques (e.g., thin section, mercury injection capillary pressure, and nuclear magnetic resonance) to illustrate the reservoir characteristics. The Longtan sandstones, according to our study, are classified as litharenites, and are characterized by thin layers, high rock fragment and clay contents, abundant micropores, complex pore-throat structures, and low porosities and permeabilities. Compared with other typical tight sandstones in China, the Longtan sandstones have more lithic content and tighter pore throat structures. Therefore, tight-gas potential is interpreted to be limited in the Longtan sandstones. However, a model for the commingled production of tight-sand gas, shale gas and coalbed methane could be viable since the Longtan sandstones are interbedded with coals and shales, which provides an opportunity for unconventional gas development in marine-continental transitional environments.

     

  • loading
  • [1]
    BP. BP statistical review of world energy[EB/OL]. [2019-06-12]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf.
    [2]
    ZOU Caineng, ZHU Rukai, LIU Keyu, et al. Tight gas sandstone reservoirs in China: characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 82-91. doi: 10.1016/j.petrol.2012.02.001
    [3]
    LAW B E. Basin-centered gas systems[J]. AAPG Bulletin, 2002, 86(11): 1891-1919.
    [4]
    李耀华, 宋岩, 姜振学, 等. 全球致密砂岩气盆地参数统计分析[J]. 天然气地球科学, 2017, 28(6): 952-964. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201706015.htm

    LI Yaohua, SONG Yan, JIANG Zhenxue, et al. Parameters statistic analysis of global tight sand gas basins[J]. Natural Gas Geoscience, 2017, 28(6): 952-964. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201706015.htm
    [5]
    郭少斌, 付娟娟, 高丹, 等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质, 2015, 37(5): 535-540. doi: 10.11781/sysydz201505535

    GUO Shaobin, FU Juanjuan, GAO Dan, et al. Research status and prospects for marine-continental shale gases in China[J]. Petroleum Geology & Experiment, 2015, 37(5): 535-540. doi: 10.11781/sysydz201505535
    [6]
    陈基瑜, 李俊乾, 李臣臣, 等. 黔西北可乐向斜中段煤层气与致密砂岩气共探潜力评价[J]. 煤田地质与勘探, 2018, 46(2): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201802005.htm

    CHEN Jiyu, LI Junqian, LI Chenchen, et al. Co-exploration potential for coalbed methane and tight sandstone gas in the middle section of the Kele Syncline, Northwest Guizhou[J]. Coal Geology & Exploration, 2018, 46(2): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201802005.htm
    [7]
    ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164. doi: 10.2138/rmg.2015.80.04
    [8]
    康海亮, 林畅松, 李洪辉, 等. 库车坳陷依南地区阿合组致密砂岩气储层特征与有利区带预测[J]. 石油实验地质, 2016, 38(2): 162-169. doi: 10.11781/sysydz201602162

    KANG Hailiang, LIN Changsong, LI Honghui, et al. Reservoir characteristics and favorable zone prediction of tight sandstone gas of the Ahe Formation in Yinan area, Kuqa Depression[J]. Petroleum Geology & Experiment, 2016, 38(2): 162-169. doi: 10.11781/sysydz201602162
    [9]
    NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. doi: 10.1306/10240808059
    [10]
    LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Review, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003
    [11]
    严强, 张云峰, 付航, 等. 运用高压压汞及扫描电镜多尺度表征致密砂岩储层微纳米级孔喉特征: 以渤海湾盆地沾化凹陷义176区块沙四段致密砂岩储层为例[J]. 石油实验地质, 2018, 40(2): 280-287. doi: 10.11781/sysydz201802280

    YAN Qiang, ZHANG Yunfeng, FU Hang, et al. High pressure mercury injection and scanning electron microscopy applied to characterize micro- and nano-scale pore throats in tight sandstone reservoirs: a case study of the fourth member of Shahejie Formation in Yi176 block, Zhanhua Sag, Bohai Bay Basin[J]. Petro-leum Geology & Experiment, 2018, 40(2): 280-287. doi: 10.11781/sysydz201802280
    [12]
    LUO Wen, HOU Mingcai, LIU Xinchun, et al. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan Formation, Northwestern Guizhou, China[J]. Marine and Petroleum Geology, 2018, 89: 58-67. doi: 10.1016/j.marpetgeo.2017.06.029
    [13]
    MA Xiao, GUO Shaobin, SHI Dishi, et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR (Guizhou, China)[J]. Marine and Petroleum Geology, 2019, 107: 555-571. doi: 10.1016/j.marpetgeo.2019.05.018
    [14]
    曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响: 以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm

    CAO Taotao, LIU Guangxiang, CAO Qinggu, et al. Influence of maceral composition on organic pore development in shale: a case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm
    [15]
    张鹏, 黄宇琪, 杨军伟, 等. 黔西北龙潭组页岩吸附能力主控因素分析[J]. 断块油气田, 2019, 26(02): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902007.htm

    ZHANG Peng, HUANG Yuqi, YANG Junwei, et al. Main controlling factors of shale adsorption capacity of Longtan Formation in Northwest Guizhou[J]. Fault-Block Oil and Gas Field, 2019, 26(02): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902007.htm
    [16]
    曹涛涛, 邓模, 刘虎, 等. 川南-黔北地区龙潭组页岩气成藏条件分析[J]. 特种油气藏, 2018, 25(3): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803002.htm

    CAO Taotao, DENG Mo, LIU Hu, et al. Shale gas accumulation condition analysis of Longtan Formation in southern Sichuan-northern Guizhou[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201803002.htm
    [17]
    彭艳霞, 郭少斌, 马啸. 贵州龙潭组海陆交互相页岩气评价[J]. 特种油气藏, 2018, 25(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201804002.htm

    PENG Yanxia, GUO Shaobin, MA Xiao. Evaluation on the paralic shale gas of Longtan Formation in Guizhou[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201804002.htm
    [18]
    窦新钊, 姜波, 秦勇, 等. 黔西地区构造演化及其对晚二叠世煤层的控制[J]. 煤炭科学技术, 2012, 40(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203030.htm

    DOU Xinzhao, JIANG Bo, QIN Yong, et al. Structure evolution in west of Guizhou area and control to seam in Late Permian[J]. Coal Science and Technology, 2012, 40(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203030.htm
    [19]
    辛福东, 许浩, 汤达祯, 等. 基于小波变换的黔西北地区龙潭组煤系地层层序划分[J]. 油气地质与采收率, 2018, 25(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201801008.htm

    XIN Fudong, XU Hao, TANG Dazhen, et al. Sequence division of Longtan coal measure strata based on wavelet transform in northwestern Guizhou[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201801008.htm
    [20]
    王旭, 王国司, 赵黔荣, 等. 贵州西部六盘水地区天然气远景评价[J]. 贵州地质, 1997, 14(4): 337-345. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199704009.htm

    WANG Xu, WANG Guosi, ZHAO Qianrong, et al. Potential for natural gas in the Liupanshui area, western Guizhou[J]. Guizhou Geology, 1997, 14(4): 337-345. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199704009.htm
    [21]
    牛新生, 冯常茂, 刘进. 黔中隆起的形成时间及形成机制探讨[J]. 海相油气地质, 2007, 12(2): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200702009.htm

    NIU Xinsheng, FENG Changmao, LIU Jin. Formation mechanism and time of Qianzhong Uplift[J]. Marine Origin Petroleum Geo-logy, 2007, 12(2): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200702009.htm
    [22]
    黄昔容, 陶述平. 贵州织金地区晚二叠世的沉积环境分析[J]. 贵州地质, 1999, 16(4): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199904005.htm

    HUANG Xirong, TAO Shuping. Analysis on sedimentary environment of Upper Permian in Zhijin region of Guizhou[J]. Guizhou Geology, 1999, 16(4): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199904005.htm
    [23]
    沈玉林, 秦勇, 郭英海, 等. "多层叠置独立含煤层气系统"形成的沉积控制因素[J]. 地球科学(中国地质大学学报), 2012, 37(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203021.htm

    SHEN Yulin, QIN Yong, GUO Yinghai, et al. Sedimentary controlling factor of unattached multiple superimposed coalbed-methane system formation[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203021.htm
    [24]
    FOLK R L. Petrology of sedimentary rocks[M]. Austin, Texas: Hemphill Publishing Company, 1980.
    [25]
    CAO Zhe, LIU Guangdi, ZHAN Hongbin, et al. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors[J]. Scientific Reports, 2016, 6(1): 36919.
    [26]
    KASSAB M A, HASHISH M F A, NABAWY B S, et al. Effect of kaolinite as a key factor controlling the petrophysical properties of the Nubia sandstone in central Eastern Desert, Egypt[J]. Journal of African Earth Sciences, 2017, 125: 103-117.
    [27]
    MORRISSS C E, MACINNIS J, FREEDMAN R, et al. Field test of an experimental pulsed nuclear magnetism tool[C]//SPWLA 34th Annual Logging Symposium. USA: SPE, 1993.
    [28]
    任颖惠, 吴珂, 何康宁, 等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用: 以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201701012.htm

    REN Yinghui, WU Ke, HE Kangning, et al. Application of NMR technique to movable fluid of ultra-low permeability and tight reservoir: a case study on the Yanchang Formation in Longdong area, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201701012.htm
    [29]
    王伟, 赵延伟, 毛锐, 等. 页岩油储层核磁有效孔隙度起算时间的确定: 以吉木萨尔凹陷二叠系芦草沟组页岩油储层为例[J]. 石油与天然气地质, 2019, 40(3): 550-557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903011.htm

    WANG Wei, ZHAO Yanwei, MAO Rui, et al. Determination of the starting time for measurement of NMR effective porosity in shale oil reservoir: a case study of the Permian Lucaogou shale oil reservoir, Jimusaer sag[J]. Oil & Gas Geology, 2019, 40(3): 550-557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903011.htm
    [30]
    于波, 郭兰磊, 刘璟垚, 等. 复配聚合物对驱油效果影响的核磁共振实验研究[J]. 油气地质与采收率, 2018, 25(5): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805018.htm

    YU Bo, GUO Lanlei, LIU Jingyao, et al. Experimental study on displacement effect of compound of different molecular weight polymers by NMR[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805018.htm
    [31]
    JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
    [32]
    HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (810) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return