Volume 42 Issue 3
May  2020
Turn off MathJax
Article Contents
LU Longfei, LIU Weixin, YU Lingjie, ZHANG Wentao, SHEN Baojian, BORJIGIN Tenger. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363
Citation: LU Longfei, LIU Weixin, YU Lingjie, ZHANG Wentao, SHEN Baojian, BORJIGIN Tenger. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363

Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale

doi: 10.11781/sysydz202003363
  • Received Date: 2020-02-03
  • Rev Recd Date: 2020-04-22
  • Publish Date: 2020-05-28
  • Opaline siliceous shale from the Nenjiang Formation in the Songliao Basin and siliceous shale from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in the eastern Sichuan Basin were selected to study the diagenetic evolution of biogenic siliceous shale and the characteristics of shale physical properties and pore structure changes during this process. X-ray diffraction, helium porosity, nitrogen adsorption, and high-pressure mercury intrusion were used to analyze mineral composition, total porosity, and pore structure characteristics. The dehydration and recrystallization of the biogenic opal occurred early, and the transition to quasi-crystalline opal CT and crystalline quartz was completed at the early diagenetic stage. During the conversion of opal-A to opal-CT, the total shale porosity decreased rapidly from more than 75% to around 30%. During the conversion to quartz, the rate of pore loss decreased rapidly, and the decrease was only about 5%, showing two stages. At the same time, the pore volume distribution of different types of pores also changed significantly. The loss of macropores was larger than the loss of micropores. The composition of pores gradually changed from macropores and mesopores to mesopores and micropores. In the early diagenetic stage of siliceous shale, the mechanical compaction and pressure solution occurred synchronously and had a strong effect on shale transformation, which reduced shale porosity, increased hardness, and enhanced the support and resistance to compaction, reducing the transformation and destruction of the early to middle and subsequent diagenesis. The characteristics of rapid diagenesis of siliceous shale in the early stage of biogenesis are the important controls for maintaining high porosity in the middle and late stages of diagenesis.

     

  • loading
  • [1]
    黄志诚, 黄钟瑾, 陈智娜. 下扬子区五峰组火山碎屑岩与放射虫硅质岩[J]. 沉积学报, 1991, 9(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199102000.htm

    HUANG Zhicheng, HUANG Zhongjin, CHEN Zhina. Volcanic rock and radiolarian silicilith of Wufeng Formation in Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1991, 9(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199102000.htm
    [2]
    王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486. doi: 10.13209/j.0479-8023.2014.079

    WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. doi: 10.13209/j.0479-8023.2014.079
    [3]
    卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460
    [4]
    郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm

    GUO Xusheng, LI Yuping, LIU Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm
    [5]
    魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异: 以四川盆地焦石坝地区五峰组-龙马溪组为例[J]. 天然气工业, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm

    WEI Zhihong, WEI Xiangfeng. Comparison of gas-bearing property between different pore types of shale: a case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm
    [6]
    郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO Xusheng, LI Yuping, TENGER, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [7]
    卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm
    [8]
    COMER J B. Reservoir characteristics and gas production potential of Woodford shale in the southern Midcontinent[EB/OL]. [2012-08-12]. https://scholarworks.iu.edu/dspace/handle.
    [9]
    BOWKER K A. Developments of the Barnett shale play, Fort Worth Basin[C]//LAW B E, WILSON M. Innovative gas exploration concepts symposium: Rocky Mountain Association of Geologists and Petroleum Technology Transfer Council. Denver, Colorado, 2002.
    [10]
    LEE D S, HERMAN J D, ELSWORTH D, et al. A critical evaluation of unconventional gas recovery from the Marcellus shale, northeastern United States[J]. KSCE Journal of Civil Engineering, 2011, 15(4): 679.
    [11]
    MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett shale, Fort Worth Basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175.
    [12]
    陈红宇, 卢龙飞, 刘伟新, 等. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质, 2017, 39(3): 341-347. doi: 10.11781/sysydz201703341

    CHEN Hongyu, LU Longfei, LIU Weixin, et al. Pore network changes in opaline siliceous shale during diagenesis[J]. Petro-leum Geology & Experiment, 2017, 39(3): 341-347. doi: 10.11781/sysydz201703341
    [13]
    李双建, 肖开华, 汪新伟, 等. 南方志留系碎屑矿物热年代学分析及其地质意义[J]. 地质学报, 2008, 82(8): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808007.htm

    LI Shuangjian, XIAO Kaihua, WANG Xinwei, et al. Thermochronology of detrital minerals in the Silurian strata from Southern China and its geological implications[J]. Acta Geologica Sinica, 2008, 82(8): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808007.htm
    [14]
    曹环宇, 朱传庆, 邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报, 2016, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm

    CAO Huanyu, ZHU Chuanqing, QIU Nansheng. Maximum paleotemperature of main paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics, 2016, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm
    [15]
    程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm

    CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm
    [16]
    ALEXANDRE A, MEUNIER J D, LLORENS E, et al. Methodological improvements for investigating Silcrete Formation: petrography, FT-IR and oxygen isotope ratio of Silcrete Quartz Cement, Lake Eyre Basin (Australia)[J]. Chemical Geology, 2004, 211(3/4): 261-274.
    [17]
    YILMAZ H, KACMAZ H. Distinguishing opaline silica polymorphs from α-cristobalite in Gedikler bentonite (Uşak, Turkey)[J]. Applied Clay Science, 2012, 62-63: 80-86.
    [18]
    TADA R. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement[C]//EINSELE G, RICKEN W, SEILACHER A, et al. Cycles and events in stratigraphy. Berlin, Germany: Springer, 1991: 480-491.
    [19]
    WILLIAMS L A, CRERAR D A. Silica diagenesis, Ⅱ. General mechanisms[J]. Journal of Sedimentary Petrology, 1985, 55(3): 312-321.
    [20]
    MATHENEY R K, KNAUTH L P. New isotopic temperature estimates for early silica diagenesis in bedded cherts[J]. Geology, 1993, 21(6): 519-522.
    [21]
    BOTZ R, BOHRMANN G. Low-temperature opal-CT precipitation in Antarctic deep-sea sediments: evidence from oxygen isotopes[J]. Earth and Planetary Science Letters, 1991, 107(3/4): 612-617.
    [22]
    BJØRLYKKE K. Petroleum geoscience: from sedimentary environments to rock physics[M]. Berlin, Heidelberg: Springer-Verlag, 2010.
    [23]
    WORDEN R H, FRENCH M W, MARIANI E. Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones[J]. Geology, 2012, 40(2): 179-182.
    [24]
    BLATT H, MIDDLETON G V, MURRAY R C. Origin of sedimentary rocks[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1980: 782.
    [25]
    ITAKI T. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea[J]. Marine Micropaleontology, 2003, 47(3/4): 253-270.
    [26]
    ISAACS C M. Porosity reduction during diagenesis of the Monterey Formation, Santa Barbara coastal area, California[C]//GARRISON R E, DOUGLAS R G. The Monterey Formation and related siliceous rocks of California. Los Angeles: SEPM Pacific Section, 1981: 257-271.
    [27]
    VOLPI V, CAMERLENGHI A, HILLENBRAND C D, et al. Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula[J]. Basin Research, 2003, 15(3): 339-363.
    [28]
    KELLER M A, ISAACS C M. An evaluation of temperature scales for silica diagenesis in diatomaceous sequences including a new approach based on the Miocene Monterey Formation, California[J]. Geo-Marine Letters, 1985, 5: 31-35.
    [29]
    NOBES D C, LANGSETH M G, KURAMOTO S, et al. Comparison and correlation of physical property results from Japan Sea Basin and rise sites, legs 127 and 128, 1987[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1992, 127/128: 275-1296.
    [30]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [31]
    CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
    [32]
    SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
    [33]
    HURD D C. Physical and chemical properties of siliceous skeletons[C]//ASTON S R. Silicon geochemistry and biogeochemistry. London: Academic Press, 1983: 187-244.
    [34]
    APLIN A C, MACQUAKER J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [35]
    MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (693) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return