Citation: | LU Longfei, LIU Weixin, YU Lingjie, ZHANG Wentao, SHEN Baojian, BORJIGIN Tenger. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363 |
[1] |
黄志诚, 黄钟瑾, 陈智娜. 下扬子区五峰组火山碎屑岩与放射虫硅质岩[J]. 沉积学报, 1991, 9(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199102000.htm
HUANG Zhicheng, HUANG Zhongjin, CHEN Zhina. Volcanic rock and radiolarian silicilith of Wufeng Formation in Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1991, 9(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199102000.htm
|
[2] |
王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486. doi: 10.13209/j.0479-8023.2014.079
WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. doi: 10.13209/j.0479-8023.2014.079
|
[3] |
卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460
LU Longfei, QIN Jianzhong, SHEN Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460
|
[4] |
郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm
GUO Xusheng, LI Yuping, LIU Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm
|
[5] |
魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异: 以四川盆地焦石坝地区五峰组-龙马溪组为例[J]. 天然气工业, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm
WEI Zhihong, WEI Xiangfeng. Comparison of gas-bearing property between different pore types of shale: a case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm
|
[6] |
郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
GUO Xusheng, LI Yuping, TENGER, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
|
[7] |
卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm
LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm
|
[8] |
COMER J B. Reservoir characteristics and gas production potential of Woodford shale in the southern Midcontinent[EB/OL]. [2012-08-12].
|
[9] |
BOWKER K A. Developments of the Barnett shale play, Fort Worth Basin[C]//LAW B E, WILSON M. Innovative gas exploration concepts symposium: Rocky Mountain Association of Geologists and Petroleum Technology Transfer Council. Denver, Colorado, 2002.
|
[10] |
LEE D S, HERMAN J D, ELSWORTH D, et al. A critical evaluation of unconventional gas recovery from the Marcellus shale, northeastern United States[J]. KSCE Journal of Civil Engineering, 2011, 15(4): 679.
|
[11] |
MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett shale, Fort Worth Basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175.
|
[12] |
陈红宇, 卢龙飞, 刘伟新, 等. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质, 2017, 39(3): 341-347. doi: 10.11781/sysydz201703341
CHEN Hongyu, LU Longfei, LIU Weixin, et al. Pore network changes in opaline siliceous shale during diagenesis[J]. Petro-leum Geology & Experiment, 2017, 39(3): 341-347. doi: 10.11781/sysydz201703341
|
[13] |
李双建, 肖开华, 汪新伟, 等. 南方志留系碎屑矿物热年代学分析及其地质意义[J]. 地质学报, 2008, 82(8): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808007.htm
LI Shuangjian, XIAO Kaihua, WANG Xinwei, et al. Thermochronology of detrital minerals in the Silurian strata from Southern China and its geological implications[J]. Acta Geologica Sinica, 2008, 82(8): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808007.htm
|
[14] |
曹环宇, 朱传庆, 邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报, 2016, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm
CAO Huanyu, ZHU Chuanqing, QIU Nansheng. Maximum paleotemperature of main paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics, 2016, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm
|
[15] |
程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm
CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm
|
[16] |
ALEXANDRE A, MEUNIER J D, LLORENS E, et al. Methodological improvements for investigating Silcrete Formation: petrography, FT-IR and oxygen isotope ratio of Silcrete Quartz Cement, Lake Eyre Basin (Australia)[J]. Chemical Geology, 2004, 211(3/4): 261-274.
|
[17] |
YILMAZ H, KACMAZ H. Distinguishing opaline silica polymorphs from α-cristobalite in Gedikler bentonite (Uşak, Turkey)[J]. Applied Clay Science, 2012, 62-63: 80-86.
|
[18] |
TADA R. Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement[C]//EINSELE G, RICKEN W, SEILACHER A, et al. Cycles and events in stratigraphy. Berlin, Germany: Springer, 1991: 480-491.
|
[19] |
WILLIAMS L A, CRERAR D A. Silica diagenesis, Ⅱ. General mechanisms[J]. Journal of Sedimentary Petrology, 1985, 55(3): 312-321.
|
[20] |
MATHENEY R K, KNAUTH L P. New isotopic temperature estimates for early silica diagenesis in bedded cherts[J]. Geology, 1993, 21(6): 519-522.
|
[21] |
BOTZ R, BOHRMANN G. Low-temperature opal-CT precipitation in Antarctic deep-sea sediments: evidence from oxygen isotopes[J]. Earth and Planetary Science Letters, 1991, 107(3/4): 612-617.
|
[22] |
BJØRLYKKE K. Petroleum geoscience: from sedimentary environments to rock physics[M]. Berlin, Heidelberg: Springer-Verlag, 2010.
|
[23] |
WORDEN R H, FRENCH M W, MARIANI E. Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones[J]. Geology, 2012, 40(2): 179-182.
|
[24] |
BLATT H, MIDDLETON G V, MURRAY R C. Origin of sedimentary rocks[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1980: 782.
|
[25] |
ITAKI T. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea[J]. Marine Micropaleontology, 2003, 47(3/4): 253-270.
|
[26] |
ISAACS C M. Porosity reduction during diagenesis of the Monterey Formation, Santa Barbara coastal area, California[C]//GARRISON R E, DOUGLAS R G. The Monterey Formation and related siliceous rocks of California. Los Angeles: SEPM Pacific Section, 1981: 257-271.
|
[27] |
VOLPI V, CAMERLENGHI A, HILLENBRAND C D, et al. Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula[J]. Basin Research, 2003, 15(3): 339-363.
|
[28] |
KELLER M A, ISAACS C M. An evaluation of temperature scales for silica diagenesis in diatomaceous sequences including a new approach based on the Miocene Monterey Formation, California[J]. Geo-Marine Letters, 1985, 5: 31-35.
|
[29] |
NOBES D C, LANGSETH M G, KURAMOTO S, et al. Comparison and correlation of physical property results from Japan Sea Basin and rise sites, legs 127 and 128, 1987[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1992, 127/128: 275-1296.
|
[30] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
|
[31] |
CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
|
[32] |
SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
|
[33] |
HURD D C. Physical and chemical properties of siliceous skeletons[C]//ASTON S R. Silicon geochemistry and biogeochemistry. London: Academic Press, 1983: 187-244.
|
[34] |
APLIN A C, MACQUAKER J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
|
[35] |
MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
|