Volume 42 Issue 3
May  2020
Turn off MathJax
Article Contents
LIU Weixin, LU Longfei, WEI Zhihong, YU Lingjie, ZHANG Wentao, XU Chenjie, YE Deliao, SHEN Baojian, FAN Ming. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 378-386. doi: 10.11781/sysydz202003378
Citation: LIU Weixin, LU Longfei, WEI Zhihong, YU Lingjie, ZHANG Wentao, XU Chenjie, YE Deliao, SHEN Baojian, FAN Ming. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 378-386. doi: 10.11781/sysydz202003378

Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin

doi: 10.11781/sysydz202003378
  • Received Date: 2020-03-02
  • Rev Recd Date: 2020-04-13
  • Publish Date: 2020-05-28
  • Thin section analysis, X-ray diffraction, conventional scanning electron microscopy (SEM), high-resolution Ar+ ion polishing SEM, mercury intrusion, nitrogen adsorption, total organic carbon (TOC) content and porosity analyses were used to determine the mineral composition, microstructure and micro-pore volume of shale reservoirs from different depths in the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in southeastern Sichuan Basin. There are slight differences in the content of siliceous, clay, carbonate and other minerals in shale reservoirs of well D1 in the deep layer and well J1 in the shallow layer, and the longitudinal changes are similar. Only high-quality shale layers with a silica content greater than 40% have different thicknesses. The shale reservoirs of the Wufeng-Longmaxi formations in the deep and shallow layers are dominated by micro-pores in organic matter disseminated in the shale matrix, and the microfractures around the boundaries of silt particles or organic grains and micro-foliation seams parallel to bedding plane are also common, while and intergranular pores are not developed. The high quality shale reservoir at the bottom is structurally isotropic, and the vertical and horizontal structural anisotropy becomes stronger upwards, with thinner micro-lamina and more foliation seams. The TOC content is high at the bottom, and diminishes upwards. The porosity at the bottom shows the same changing trend, indicating a large contribution of organic pores; however, the decrease in porosity is significantly smaller than that of TOC, which is inferred to be related to the existence of more inorganic pores in the shale. The mineral composition, microstructure, TOC and porosity of the Wufeng-Longmaxi shales in the deep and shallow layers have similar changes with depth. Compared with well J1 in the shallow layer, the high-quality reservoir in well D1 in the deep layer has a larger number of micro-pores, meso-pores, macro-pores and total pore volume, which might be explained by more inorganic pores such as grain boundary pores.The shale reservoirs of the Wufeng-Longmaxi formations in the southeastern Sichuan Basin maintain a good porosity under deep burial conditions and have good storage space.

     

  • loading
  • [1]
    周庆凡, 孙鹏. 美国东部页岩气项目回顾及启示[J]. 石油科技论坛, 2014, 33(5): 44-48. doi: 10.3969/j.issn.1002-302x.2014.05.009

    ZHOU Qingfan, SUN Peng. Review of shale gas project in East US[J]. Oil Forum, 2014, 33(5): 44-48. doi: 10.3969/j.issn.1002-302x.2014.05.009
    [2]
    龙胜祥, 曹艳, 朱杰, 等. 中国页岩气发展前景及相关问题初探[J]. 石油与天然气地质, 2016, 37(6): 847-853. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606008.htm

    LONG Shengxiang, CAO Yan, ZHU Jie, et al. A preliminary study on prospects for shale gas industry in China and relevant issues[J]. Oil & Gas Geology, 2016, 37(6): 847-853. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606008.htm
    [3]
    郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37. doi: 10.3969/j.issn.1672-7703.2016.03.003

    GUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling Shale Gas Field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. doi: 10.3969/j.issn.1672-7703.2016.03.003
    [4]
    陈作, 曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术, 2016, 44(1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201601003.htm

    CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201601003.htm
    [5]
    蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017, 37(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701018.htm

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701018.htm
    [6]
    董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm

    DONG Dazhong, GAO Shikui, HUANG Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm
    [7]
    王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm

    WANG Shufang, DONG Dazhong, WANG Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm
    [8]
    邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm

    ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    [9]
    龙胜祥, 冯动军, 李凤霞, 等. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804001.htm

    LONG Shengxiang, FENG Dongjun, LI Fengxia, et al. Prospect of the deep marine shale gas exploration and development in the Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(4): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804001.htm
    [10]
    董大忠, 邹才能, 戴金星, 等. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016, 27(3): 397-406. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603002.htm

    DONG Dazhong, ZOU Caineng, DAI Jinxing, et al. Suggestions on the development strategy of shale gas in China[J]. Natural Gas Geoscience, 2016, 27(3): 397-406. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603002.htm
    [11]
    曾义金, 陈作, 卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业, 2016, 36(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601012.htm

    ZENG Yijin, CHEN Zuo, BIAN Xiaobing. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry, 2016, 36(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601012.htm
    [12]
    贾长贵, 路保平, 蒋廷学, 等. DY2HF深层页岩气水平井分段压裂技术[J]. 石油钻探技术, 2014, 42(2): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201402019.htm

    JIA Changgui, LU Baoping, JIANG Tingxue, et al. Multi-stage horizontal well fracturing technology in deep shale gas well DY2HF[J]. Petroleum Drilling Techniques, 2014, 42(2): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201402019.htm
    [13]
    甘振维. 理论创新和技术进步支撑引领百亿气田建设[J]. 天然气工业, 2016, 36(12): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201612003.htm

    GAN Zhenwei. Theoretical innovation and technical progress will usher in a production period of gas fields with an annual capacity of ten billion cubic meters[J]. Natural Gas Industry, 2016, 36(12): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201612003.htm
    [14]
    张春明, 张维生, 郭英海. 川东南-黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘, 2012, 19(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201016.htm

    ZHANG Chunming, ZHANG Weisheng, GUO Yinghai. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201016.htm
    [15]
    梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htm

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (part 1): distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htm
    [16]
    张晓明, 石万忠, 徐清海, 等. 四川盆地焦石坝地区页岩气储层特征及控制因素[J]. 石油学报, 2015, 36(8): 926-939. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm

    ZHANG Xiaoming, SHI Wanzhong, XU Qinghai, et al. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(8): 926-939. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
    [17]
    郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示: 以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm

    GUO Tonglou, LIU Ruobing. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm
    [18]
    郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba Shale Gas Field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
    [19]
    郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素: 以焦石坝地区五峰组-龙马溪组为例[J]. 中国地质, 2014, 41(3): 893-901. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htm

    GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: a case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403016.htm
    [20]
    刘友祥, 俞凌杰, 张庆珍, 等. 川东南龙马溪组页岩的矿物组成与微观储集特征研究[J]. 石油实验地质, 2015, 37(3): 328-333. doi: 10.11781/sysydz201503328

    LIU Youxiang, YU Lingjie, ZHANG Qingzhen, et al. Mineral composition and microscopic reservoir features of Longmaxi shales in southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2015, 37(3): 328-333. doi: 10.11781/sysydz201503328
    [21]
    胡宗全, 杜伟, 刘忠宝. 页岩气源储耦合机理及其应用[M]. 北京: 地质出版社, 2018: 20-35.

    HU Zongquan, DU Wei, LIU Zhongbao. Shale gas-reservoir coupling mechanism and its application[M]. Beijing: Geological Publishing House, 2018: 20-35.
    [22]
    卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460
    [23]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
    [24]
    SONDERGELD C H, AMBROSE R J, RAI C S, et al. Micro-structural studies of gas shales[C]//SPE Unconventional Gas Conference. Pittsburgh, PA, USA: SPE, 2010: 1-17.
    [25]
    SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
    [26]
    郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm

    GUO Xusheng, LI Yuping, LIU Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406002.htm
    [27]
    魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异: 以四川盆地焦石坝地区五峰组-龙马溪组为例[J]. 天然气工业, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm

    WEI Zhihong, WEI Xiangfeng. Comparison of gas-bearing property between different pore types of shale: a case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm
    [28]
    HOUBEN M E, DESBOIS G, URAI J L. Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): insights from representative 2D BIB-SEM investigations on mm to nm scale[J]. Applied Clay Science, 2013, 71: 82-97.
    [29]
    刘伟新, 俞凌杰, 张文涛, 等. 川东南龙马溪组页岩微观孔隙结构特征[J]. 海洋地质与第四纪地质, 2016, 36(3): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603015.htm

    LIU Weixing, YU Lingjie, ZHANG Wentao, et al. Micro-pore structure of Longmaxi shale from southeast Sichuan Basin[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603015.htm
    [30]
    刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453

    LIU Weixin, BAO Fang, YU Lingjie, et al. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeastern Sichuan area[J]. Petroleum Geology & Experiment, 2016, 38(4): 453-459. doi: 10.11781/sysydz201604453
    [31]
    承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006, 28(6): 604-608. doi: 10.11781/sysydz200606604

    CHENG Qiuquan, CHEN Hongyu, FAN Ming, et al. Determination of the total pore texture of caprock[J]. Petroleum Geology & Experiment, 2006, 28(6): 604-608. doi: 10.11781/sysydz200606604
    [32]
    ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758.
    [33]
    BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. Ⅰ. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380.
    [34]
    MUSA M A A, YIN C Y, SAVORY R M. Analysis of the textural characteristics and pore size distribution of a commercial zeolite using various adsorption models[J]. Journal of Applied Sciences, 2011, 11(21): 3650-3654.
    [35]
    BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1386) PDF downloads(167) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return