Volume 42 Issue 3
May  2020
Turn off MathJax
Article Contents
ZHANG Wentao, HU Wenxuan, BAO Fang, YU Lingjie, FAN Ming, ZHANG Qingzhen. A method for analyzing nanopore connectivity of shale using a fluid suction experiment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415
Citation: ZHANG Wentao, HU Wenxuan, BAO Fang, YU Lingjie, FAN Ming, ZHANG Qingzhen. A method for analyzing nanopore connectivity of shale using a fluid suction experiment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 415-421. doi: 10.11781/sysydz202003415

A method for analyzing nanopore connectivity of shale using a fluid suction experiment

doi: 10.11781/sysydz202003415
  • Received Date: 2020-01-08
  • Rev Recd Date: 2020-04-13
  • Publish Date: 2020-05-28
  • A method for analyzing the pore connectivity of shale based on a suction experiment of tracer fluid is presented. Sodium chloraurate solution is absorbed into shale pores which have been previously evacuated, and then the solute in the pores is converted to gold by heating. After the suction experiment, the sample surface is polished and analyzed with scanning electron microscopy, in order to get the characteristics of connected pores at the nano-scale. The results of two core samples from the Wufeng-Longmaxi formations in the Sichuan Basin show the connected network in shale could be divided into three parts. The interior connectivity of pores in organic matter is related to the density of pores, and organic matter normally has low flow efficiency because of narrow throat radius. Fractures distributed at grain boundaries such as minerals, organic matter and clay sheets are advantageous pathways, and organic pores are connected by grain boundaries. The development of micro-cracks/fractures, which have high permeability, could significantly improve shale connectivity. Shale pore connectivity has great anisotropy, which means connectivity parallel to bedding is much better than that vertical to bedding.

     

  • loading
  • [1]
    张艳, 张春雷, 阎娜, 等. 基于贝叶斯分类的图像分析方法在孔隙结构参数表征中的应用: 以姬塬油田长9油层组为例[J]. 油气地质与采收率, 2018, 25(3): 61-67, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803009.htm

    ZHANG Yan, ZHANG Chunlei, YAN Na, et al. Application of image analysis based on Bayesian classification in characterization of pore structure parameters: a case study of Chang9 oil layer in Jiyuan Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3): 61-67, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803009.htm
    [2]
    王濡岳, 尹帅, 龚大建, 等. 下寒武统页岩孔隙结构与分形特征[J]. 断块油气田, 2018, 25(5): 589-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805010.htm

    WANG Ruyue, YIN Shuai, GONG Dajian, et al. Pore structure and fractal characteristics of Lower Cambrian shales[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 589-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805010.htm
    [3]
    肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906006.htm

    XIAO Dianshi, ZHAO Renwen, YANG Xiao, et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906006.htm
    [4]
    欧阳思琪, 孙卫, 黄何鑫. 多方法协同表征特低渗砂岩储层全孔径孔隙结构: 以鄂尔多斯盆地合水地区砂岩储层为例[J]. 石油实验地质, 2018, 40(4): 595-604. doi: 10.11781/sysydz201804595

    OUYANG Siqi, SUN Wei, HUANG Hexing. Multi-method synergistic characterization of total pore structure of extra-low permeabi-lity sandstone reservoirs: case study of the Heshui area of Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 595-604. doi: 10.11781/sysydz201804595
    [5]
    赵日新, 卢双舫, 薛海涛, 等. 扫描电镜分析参数对定量评价页岩微观孔隙的影响[J]. 石油与天然气地质, 2019, 40(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm

    ZHAO Rixin, LU Shuangfang, XUE Haitao, et al. Effect of SEM parameters on quantitative evaluation of shale micropores[J]. Oil & Gas Geology, 2019, 40(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905019.htm
    [6]
    孙超, 姚素平. 页岩油储层孔隙发育特征及表征方法[J]. 油气地质与采收率, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm

    SUN Chao, YAO Suping. Pore structure and characterization methods of shale oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm
    [7]
    马海洋, 夏遵义, 温庆志, 等. 渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究[J]. 石油实验地质, 2019, 41(1): 149-156. doi: 10.11781/sysydz201901149

    MA Haiyang, XIA Zunyi, WEN Qingzhi, et al. Micro-pore characte-ristics of shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(1): 149-156. doi: 10.11781/sysydz201901149
    [8]
    KLAVER J, HEMES S, HOUBEN M, et al. The connectivity of pore space in mudstones: insights from high-pressure Wood's metal injection, BIB-SEM imaging, and mercury intrusion porosimetry[J]. Geofluids, 2015, 15(4): 577-591. doi: 10.1111/gfl.12128
    [9]
    KLAVER J M, SCHMATZ J, KROOSS B, et al. Porosity and pore connectivity in immature and artificially matured source rock using BIB-SEM, WMI and MIP[C]//Proceedings of the Fifth EAGE Shale Workshop. [s. l. ]: European Association of Geoscientists & Engineers, 2016.
    [10]
    KING H E Jr, EBERLE A P R, WALTERS C C, et al. Pore architecture and connectivity in gas shale[J]. Energy & Fuels, 2015, 29(3): 1375-1390.
    [11]
    CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale[C]//North American Unconventional Gas Conference and Exhibition. The Woodlands, TX, USA: SPE, 2011.
    [12]
    KELLER L M, SCHUETZ P, ERNI R, et al. Characterization of multi-scale microstructural features in Opalinus Clay[J]. Microporous and Mesoporous Materials, 2013, 170: 83-94. doi: 10.1016/j.micromeso.2012.11.029
    [13]
    赵斌, 尚彦军. 基于复杂网络理论的页岩纳米孔隙连通性表征[J]. 工程地质学报, 2018, 26(2): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802028.htm

    ZHAO Bin, SHANG Yanjun. Characterizing connectivity of nano-sized pores of shale based on complex network theory[J]. Journal of Engineering Geology, 2018, 26(2): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802028.htm
    [14]
    孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 43(3): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603024.htm

    SUN Liang, WANG Xiaoqi, JIN Xu, et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development, 2016, 43(3): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603024.htm
    [15]
    HU Qinhong, EWING R P, DULTZ S. Low pore connectivity in natural rock[J]. Journal of Contaminant Hydrology, 2012, 133: 76-83.
    [16]
    吕海刚, 于萍, 闫建萍, 等. 四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J]. 天然气地球科学, 2015, 26(8): 1556-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508017.htm

    LÜ Haigang, YU Ping, YAN Jianping, et al. Experimental investigation of water absorption and its significance on pore network connectivity in mudstone from Silurian Longmaxi Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(8): 1556-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508017.htm
    [17]
    HU Qinhong, EWING R P, ROWE H D. Low nanopore connectivity limits gas production in Barnett Formation[J]. Journal of Geophy-sical Research: Solid Earth, 2015, 120(12): 8073-8087.
    [18]
    胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报, 2018, 39(3): 278-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm

    HU Qinhong, LIU Huimin, LI Maowen, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3): 278-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm
    [19]
    YANG Rui, HAO Fang, HE Sheng, et al. Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales[J]. Marine and Petroleum Geology, 2017, 84: 225-242.
    [20]
    VEGA B, DUTTA A, KOVSCEK A R. CT imaging of low-permeability, dual-porosity systems using high X-ray contrast gas[J]. Transport in Porous Media, 2014, 101(1): 81-97.
    [21]
    MAYO S, JOSH M, NESTERETS Y, et al. Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal[J]. Fuel, 2015, 154: 167-173.
    [22]
    HILDENBRAND A, URAI J L. Investigation of the morphology of pore space in mudstones: first results[J]. Marine and Petro-leum Geology, 2003, 20(10): 1185-1200.
    [23]
    DESBOIS G, URAI J L, HEMES S, et al. Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany)[J]. Journal of Petroleum Science and Engineering, 2016, 140: 128-148.
    [24]
    张林彦, 包友书, 习成威. 东营凹陷古近系泥页岩孔隙结构特征及连通性[J]. 新疆石油地质, 2018, 39(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201802003.htm

    ZHANG Linyan, BAO Youshu, XI Chengwei. Pore structure characteristics and pore connectivity of Paleogene shales in Dong-ying Depression[J]. Xinjiang Petroleum Geology, 2018, 39(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201802003.htm
    [25]
    JAIN A, ONG S P, HAUTIER G, et al. The materials project: a materials genome approach to accelerating materials innovation[J]. AIP Materials, 2013, 1: 1-11. doi: 10.1063/1.4812323&mimeType=pdf&containerItemId=content/aip/journal/aplmater
    [26]
    BARTH T, RIIS M. Interactions between organic acids anions in formation waters and reservoir mineral phases[J]. Organic Geochemistry, 1992, 19(4/6): 455-482.
    [27]
    ZHANG Wentao, HU Wenxuan, BORJIGIN Tenger, et al. Pore characteristics of different organic matter in black shale: a case study of the Wufeng-Longmaxi formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43.
    [28]
    ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Nano-scale pore characteristics of organic-rich Wufeng and Longmaxi shales in the Sichuan Basin, China[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6721-6731.
    [29]
    YANG Rui, HE Sheng, YI Jizheng, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70: 27-45.
    [30]
    蒲泊伶, 董大忠, 耳闯, 等. 川南地区龙马溪组页岩有利储层发育特征及其影响因素[J]. 天然气工业, 2013, 33(12): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312006.htm

    PU Boling, DONG Dazhong, ER Chuang, et al. Favorable reservoir characteristics of the Longmaxi shale in the southern Sichuan Basin and their influencing factors[J]. Natural Gas Industry, 2013, 33(12): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201312006.htm
    [31]
    何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39(3): 472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803006.htm

    HE Chencheng, HE Sheng, GUO Xusheng, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803006.htm
    [32]
    葛明娜, 庞飞, 包书景. 贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制: 以安页1井为例[J]. 石油实验地质, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023

    GE Mingna, PANG Fei, BAO Shujing. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content: a case study of well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology & Experiment, 2019, 41(1): 23-30. doi: 10.11781/sysydz201901023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (799) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return