Citation: | LI Chuxiong, SHEN Baojian, PAN Anyang, ZHANG Wentao, LI Ang, DING Jianghui. Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 434-442. doi: 10.11781/sysydz202003434 |
[1] |
王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm
WANG Zhigang. Breakthrough of fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm
|
[2] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
|
[3] |
聂海宽, 张金川. 页岩气储层类型和特征研究: 以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001
NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir: a case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011, 33(3): 219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001
|
[4] |
熊亮. 川南威荣页岩气田五峰组-龙马溪组页岩沉积相特征及其意义[J]. 石油实验地质, 2019, 41(3): 326-332. doi: 10.11781/sysydz201903326
XIONG Liang. Characteristics and significance of sedimentary facies of Wufeng-Longmaxi formation shale in Weirong Shale Gas Field, southern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 326-332. doi: 10.11781/sysydz201903326
|
[5] |
王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm
WANG Shufang, DONG Dazhong, WANG Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm
|
[6] |
张奥博, 汤达祯, 陶树, 等. 中美典型含油气页岩地质特征及开发现状[J]. 油气地质与采收率, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htm
ZHANG Aobo, TANG Dazhen, TAO Shu, et al. Analysis of geological background and development situation of typical oil/gas-bearing shales in China and America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901004.htm
|
[7] |
申浩冉, 丁文龙, 谷阳, 等. 黔北凤冈地区龙马溪组页岩孔隙结构特征[J]. 断块油气田, 2019, 26(04): 480-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904016.htm
SHEN Haoran, DING Wenlong, GU Yang, et al. Pore structure characteristics of Longmaxi Formation shale in Fenggang area, northern Guizhou[J]. Fault-Block Oil and Gas Field, 2019, 26(04): 480-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904016.htm
|
[8] |
彭钰洁, 刘鹏, 吴佩津. 页岩有机质热演化过程中孔隙结构特征研究[J]. 特种油气藏, 2018, 25(5): 141-145. doi: 10.3969/j.issn.1006-6535.2018.05.027
PENG Yujie, LIU Peng, WU Peijin. Pore structure characterization of shale organic matter during thermal evolution[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 141-145. doi: 10.3969/j.issn.1006-6535.2018.05.027
|
[9] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
|
[10] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061
|
[11] |
POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744. doi: 10.1306/03051514151
|
[12] |
吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htm
WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Deve-lopment, 2015, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htm
|
[13] |
马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm
MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm
|
[14] |
张毅, 胡守志, 廖泽文, 等. 基于压机热模拟实验的页岩孔隙演化特征[J]. 地球科学, 2019, 44(3): 983-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903025.htm
ZHANG Yi, HU Shouzhi, LIAO Zewen, et al. Shale pore evolution characteristics based on semi-closed pyrolysis experiment[J]. Earth Science, 2019, 44(3): 983-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903025.htm
|
[15] |
申宝剑, 仰云峰, 腾格尔, 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰-龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480
SHEN Baojian, YANG Yunfeng, TENGER, et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: a case study of the Wufeng-Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480
|
[16] |
郑伦举, 秦建中, 何生, 等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296
ZHENG Lunju, QIN Jianzhong, HE Sheng, et al. Preliminary study of formation porosity thermocompression simulation expe-riment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296
|
[17] |
GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological features and reservoiring mode of shale gas reservoirs in Longmaxi Formation of the Jiaoshiba area[J]. Acta Geologica Sinica, 2014, 88(6): 1811-1821.
|
[18] |
马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm
MA Zhongliang, ZHENG Lunju, LI Zhiming. The thermocompre-ssion simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentolo-gica Sinica, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm
|
[19] |
LANDIS C R, CASTAÑO J R. Maturation and bulk chemical properties of a suite of solid hydrocarbons[J]. Organic Geochemistry, 1995, 22(1): 137-149.
|
[20] |
JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen")[J]. International Journal of Coal Geology, 1989, 11(1): 65-79.
|
[21] |
BECHTEL A, JIA Jianliang, STROBL S A I, et al. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): implications from geochemical analysis[J]. Organic Geochemistry, 2012, 46: 76-95.
|
[22] |
焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm
JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morpholo-gical structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm
|
[23] |
谢小敏, 腾格尔, 仰云峰, 等. Leica QWin_V3图像处理软件在烃源岩有机岩石学定量分析中的应用[J]. 石油实验地质, 2013, 35(4): 468-472. doi: 10.11781/sysydz201304468
XIE Xiaomin, TENGER, YANG Yunfeng, et al. Application of Leica QWin_V3 image analysis software in organic petrologic quantitative study[J]. Petroleum Geology & Experiment, 2013, 35(4): 468-472. doi: 10.11781/sysydz201304468
|
[24] |
熊波, 李贤庆, 马安来, 等. 全岩显微组分定量统计及其在烃源岩评价中的应用[J]. 江汉石油学院学报, 2001, 23(3): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200103004.htm
XIONG Bo, LI Xianqing, MA Anlai, et al. Quantitative statistics of whole rock macerals and its application in evaluating source rocks[J]. Journal of Jianghan Petroleum Institute, 2001, 23(3): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200103004.htm
|
[25] |
KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190: 3-28.
|
[26] |
KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722.
|
[27] |
MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
|
[28] |
郭慧娟, 王香增, 张丽霞, 等. 抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义[J]. 地球化学, 2014, 43(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404011.htm
GUO Huijuan, WANG Xiangzeng, ZHANG Lixia, et al. Adsorption of N2 and CO2 on mature shales before and after extraction and its implication for investigations of pore structures[J]. Geochimica, 2014, 43(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404011.htm
|
[29] |
LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore deve-lopment in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geoche-mistry, 2015, 87: 119-132.
|
[30] |
李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901
LI Chuxiong, XIAO Qilin, CHEN Qi, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901
|
[31] |
XIONG Yongqiang, JIANG Wenmin, WANG Xiaotao, et al. Formation and evolution of solid bitumen during oil cracking[J]. Marine and Petroleum Geology, 2016, 78: 70-75.
|
[32] |
CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
|
[33] |
CHEN Ji, XIAO Xianming. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
|
[34] |
KLAVER J, DESBOIS G, LITTKE R, et al. BIB-SEM pore characterization of mature and post mature Posidonia shale samples from the Hils area, Germany[J]. International Journal of Coal Geology, 2016, 158: 78-89.
|
[35] |
XI Zhaodong, TANG Shuheng, WANG Jing, et al. Formation and development of pore structure in marine-continental transitional shale from northern China across a maturation gradient: insights from gas adsorption and mercury intrusion[J]. International Journal of Coal Geology, 2018, 200: 87-102.
|
[36] |
KUILA U, PRASAD M. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61(2): 341-362.
|