Volume 42 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
LI Maowen, JIN Zhijun, DONG Mingzhe, MA Xiaoxiao, LI Zhiming, JIANG Qigui, BAO Yunjie, TAO Guoliang, QIAN Menhui, LIU Peng, CAO Tingting. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
Citation: LI Maowen, JIN Zhijun, DONG Mingzhe, MA Xiaoxiao, LI Zhiming, JIANG Qigui, BAO Yunjie, TAO Guoliang, QIAN Menhui, LIU Peng, CAO Tingting. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

Advances in the basic study of lacustrine shale evolution and shale oil accumulation

doi: 10.11781/sysydz202004489
  • Received Date: 2020-04-10
  • Rev Recd Date: 2020-05-20
  • Publish Date: 2020-07-28
  • This manuscript provides a review of the recent advances in the study of fundamental processes and geological drivers involved in the lacustrine shale deposition, burial diagenesis, thermal maturation and in-situ oil accumulation, aimed at identifying key problem areas for future study. A survey of relevant literature on the sedimentology of fine-grained sediments reveals that paleoclimate changes on the global scale and tectonic evolution on the basinal scale have played a significant role in the formation of organic rich shales. Due to the strong heterogeneity in the mixed deposition of fine-grained sediments in the lacustrine setting, multiscale integration of different grain sequence sedimentary rocks is vital in the modeling of the lacustrine shale oil reservoirs. Techniques and methodologies are generally mature for characterizing and describing micropores and microfractures at various scales in the lacustrine shales. However, the current understanding of the dynamic processes in the shale diagenesis is incompatible with the high demand for predicting the key shale attributes as an effective shale oil reservoir. The processes involved in the thermal maturation, hydrocarbon generation and expulsion, as well as the physical status of oils in a shale, are generally well understood. The next logic step would be the application of these knowledges to tailor our methodologies for the classification and evaluation of shale oil resources in different tectonostratigraphic settings. While progresses have been made fairly recently in the physical constraints of the multi-phase and multiscale non-Darcy flows in the lacustrine shale, it is highly desirable to gain a better understanding of the likely modes, as well as associated temporal and spatial consequences, of hydrocarbon flows across different shale lithofacies. As the basic study of shale oil accumulation mechanisms has lagged behind the industry drilling activity, it is necessary to expedite the basic study in order to develop suitable protocols, parameters and laboratory tools for core area and "sweet-spots" delineation in a lacustrine shale play.

     

  • loading
  • [1]
    傅成玉. 非常规油气资源勘探开发[M]. 北京: 中国石化出版社, 2015.

    FU Chengyu. Exploration and development for unconventional hydrocarbons[M]. Beijing: China Petrochemical Press, 2015.
    [2]
    匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 39(6): 657-667. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206004.htm

    KUANG Lichun, TANG Yong, LEI Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206004.htm
    [3]
    中国石化石油勘探开发研究院. 中国页岩油中长期发展规划研究[M]. 国家能源局, 2019.

    SINOPEC Petroleum Exploration and Development Research Institute. Study on the medium and long term development plan of shale oil in China[M]. National Energy Commission, 2019.
    [4]
    金之钧. 中国页岩油发展战略研究[R]. 北京: 中国科学院, 2019.

    JIN Zhijun. Research on China's shale oil development strategy[R]. Beijing: Chinese Academy of Sciences, 2019.
    [5]
    POTTER P E, MAYNARD J B, PRYOR W A. Sedimentology of shale: study guide and reference source[M]. New York: Springer-Verlag, 1980.
    [6]
    MACQUAKER J H S, ADAMS A E. Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744. doi: 10.1306/012203730735
    [7]
    SCHIEBER J. Sedimentary features indicating erosion, condensation, and hiatuses in the Chattanooga shale of central Tennessee: relevance for sedimentary and stratigraphic evolution[C]//SCHIEBER J, ZIMMERLE W, SETHI P V. Shales and mudstones volume 1: basin studies, sedimentology, and paleontology. Stuttgart: Schweizerbart'sche Verlagsbuchjandlung, 1998: 1-10.
    [8]
    WRIGHT A E. Three-dimensional shape analysis of fine-grained sediments[J]. SEPM Journal of Sedimentary Research, 1957, 27(3): 306-312.
    [9]
    PICARD M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
    [10]
    DEAN W E, STOW D A V, LEINEN M. Classification of deep-sea, fine-grained sediments[J]. Journal of Sedimentary Petrology, 1985, 55(2): 250-256.
    [11]
    DIMBERLINE A J, BELL A, WOODCOCK N H. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin[J]. Journal of the Geological Society, 1990, 147(4): 693-701. doi: 10.1144/gsjgs.147.4.0693
    [12]
    LEMONS D R, CHAN M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of late Pleistocene Lake Bonneville, northern Utah and southern Idaho[J]. AAPG Bulletin, 1999, 83(4): 635-665.
    [13]
    STOW D A V, HUC A Y, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geo-logy, 2001, 18(4): 491-498. doi: 10.1016/S0264-8172(01)00012-5
    [14]
    MACQUAKER J H S, KELLER M A. Mudstone sedimentation at high latitudes: ice as a transport medium for mud and supplier of nutrients[J]. Journal of Sedimentary Research, 2005, 75(4): 696-709. doi: 10.2110/jsr.2005.056
    [15]
    邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    [16]
    DAWSON W C. Shale Microfacies: Eagle Ford group (Cenomanian-Turonian) north-central Texas outcrops and subsurface equivalents[J]. AAPG Bulletin, 2000, 50: 607-621.
    [17]
    PARRISH C B, HAYWARD J, TORO J, et al. U-Pb zircon geochronology of the Tioga ash layers within the Marcellus shale, Appalachian Basin: implications for basin evolution during the Middle Devonian[C]//American Geophysical Union. Fall Meeting 2012. AGU, 2012.
    [18]
    YANG Renchao, VAN LOON A J T, JIN Xiaohui, et al. From divergent to convergent plates: resulting facies shifts along the southern and western margins of the Sino-Korean Plate during the Ordovician[J]. Journal of Geodynamics, 2019, 129: 149-161. doi: 10.1016/j.jog.2018.02.001
    [19]
    LASKAR J, ROBUTEL P, JOUTEL F, et al. A long term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
    [20]
    MEYERS S R. Resolving milankovitchian controversies: the Triassic Iatemar limestone and the Eocene Green River Formation[J]. Geo-logy, 2008, 36(4): 319-322.
    [21]
    GAMBACORTA G, MENICHETTI E, TRINCIANTI E, et al. Orbital control on cyclical primary productivity and benthic anoxia: astronomical tuning of the Telychian Stage (Early Silurian)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 152-162. doi: 10.1016/j.palaeo.2018.01.003
    [22]
    HILGEN F J, HINNOV L A, AZIZ H A, et al. Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy[J]. Geological Society London Special Publications, 2015, 404: 157-197. doi: 10.1144/SP404.12
    [23]
    HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734.
    [24]
    石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的高精度旋回识别与划分: 以南图尔盖盆地Ary301井中侏罗统为例[J]. 沉积学报, 2017, 35(3): 436-448. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703002.htm

    SHI Juye, JIN Zhijun, LIU Quanyou, et al. Recognition and division of high-resolution sequences based on the Milankovitch theory: a case study from the Middle Jurassic of well Ary301 in the South Turgay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 436-448. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703002.htm
    [25]
    SCHIEBER J, KRINSLEY D, RICIPUTI L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985. doi: 10.1038/35023143
    [26]
    LOUCKS R G, RUPPEL S C. Mississippian Barnett shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. doi: 10.1306/11020606059
    [27]
    TUCKER M E. Sedimentary petrology[M]. Oxford: Wiley-Blackwell, 2001.
    [28]
    APLIN A C, MACQUAKER J H S. GS20-Getting started in shales[DS]. Tulsa: AAPG, 2010.
    [29]
    APLIN A C, MACQUAKER J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. doi: 10.1306/03281110162
    [30]
    APLIN A C, FLEET A J, MACQUAKER J H S. Muds and mudstones: physical and fluid-flow properties[J]. Geological Society London Special Publications, 1999, 158(1): 1-8. doi: 10.1144/GSL.SP.1999.158.01.01
    [31]
    姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm

    JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm
    [32]
    刘惠民, 张守鹏, 王朴, 等. 沾化凹陷罗家地区沙三段下亚段页岩岩石学特征[J]. 油气地质与采收率, 2012, 19(6): 11-15. doi: 10.3969/j.issn.1009-9603.2012.06.003

    LIU Huimin, ZHANG Shoupeng, WANG Pu, et al. Petrological characteristics of lower Es3 submember shale in Luojia area, Zhanhua Depression[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 11-15. doi: 10.3969/j.issn.1009-9603.2012.06.003
    [33]
    MA Jian, WU Chaodong, WANG Yizhe, et al. Paleoenvironmental reconstruction of a saline lake in the tertiary: evidence from aragonite laminae in the northern Tibet Plateau[J]. Sedimentary Geo-logy, 2017, 353: 1-12. doi: 10.1016/j.sedgeo.2017.03.002
    [34]
    王雨菡, 丁伟铭, 刘璇, 等. 渤海湾盆地渤南洼陷沙河街组三段下亚段岩相特征及有机质富集成因[J]. 石油与天然气地质, 2019, 40(5): 1106-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905016.htm

    WANG Yuhan, DING Weiming, LIU Xuan, et al. Lithofacies and causal mechanism of organic matter enrichment in the lower submember of the 3rd member of Shahejie Formation, Bonan Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(5): 1106-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905016.htm
    [35]
    吴崇筠, 薛叔浩. 中国含油气盆地沉积学[M]. 北京: 石油工业出版社, 1993.

    WU Chongjun, XUE Shuhao. Sedimentology of petroliferous basins of China[M]. Beijing: Petroleum Industry Press, 1993.
    [36]
    冯增昭, 王英华, 刘焕杰, 等. 中国沉积学[M]. 北京: 石油工业出版社, 1994: 396-457.

    FENG Zengzhao, WANG Yinghua, LIU Huanjie, et al. Chinese sedimentology[M]. Beijing: Petroleum Industry Press, 1994: 396-457.
    [37]
    薛叔浩, 刘雯林, 薛良清, 等. 湖盆沉积地质与油气勘探[M]. 北京: 石油工业出版社, 2002.

    XUE Shuhao, LIU Wenlin, XUE Liangqing, et al. Sedimentary geology and hydrocarbon exploration of Lake Basin[M]. Beijing: Petroleum Industry Press, 2002.
    [38]
    冯增昭. 中国沉积学[M]. 2版. 北京: 石油工业出版社, 2013: 706-811.

    FENG Zengzhao. Sedimentology of China[M]. 2nd ed. Beijing: Petroleum Industry Press, 2013: 706-811.
    [39]
    傅强, 李益, 张国栋, 等. 苏北盆地晚白垩世-古新世海侵湖泊的证据及其地质意义[J]. 沉积学报, 2007, 25(3): 380-385. doi: 10.3969/j.issn.1000-0550.2007.03.008

    FU Qiang, LI Yi, ZHANG Guodong, et al. Evidence of transgression lake of Subei Basin during Late Cretaceous and Paleocene Epoch and its geological significance[J]. Acta Sedimentologica Sinica, 2007, 25(3): 380-385. doi: 10.3969/j.issn.1000-0550.2007.03.008
    [40]
    陈世悦, 王玲, 李聪, 等. 歧口凹陷古近系沙河街组-段下亚段湖盆咸化成因[J]. 石油学报, 2012, 33(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201004.htm

    CHEN Shiyue, WANG Ling, LI Cong, et al. The saline genesis of lacustrine basin in the lower section of the first member of Shahejie Formation in Qikou Sag[J]. Acta Petrolei Sinica, 2012, 33(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201004.htm
    [41]
    张敏, 黄光辉, 李洪波, 等. 四川盆地上三叠统须家河组气源岩分子地球化学特征: 海侵事件的证据[J]. 中国科学(地球科学), 2013, 43(1): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201301007.htm

    ZHANG Min, HUANG Guanghui, LI Hongbo, et al. Molecular geochemical characteristics of gas source rocks from the Upper Triassic Xujiahe Formation indicate transgression events in the Sichuan Basin[J]. Science China Earth Sciences, 2012, 55(8): 1260-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201301007.htm
    [42]
    XU Huiyuan, GEORGE S, HOU Dujie. The occurrence of isorenieratane and 24-n-propylcholestanes in Paleogene lacustrine source rocks from the Dongying Depression, Bohai Bay Basin: implications for bacterial sulfate reduction, photic zone euxinia and seawater incursions[J]. Organic Geochemistry, 2019, 127: 59-80. doi: 10.1016/j.orggeochem.2018.11.008
    [43]
    金强, 黄醒汉. 东濮凹陷早第三纪盐湖成因的探讨: 一种深水成因模式[J]. 华东石油学院学报(自然科学版), 1985(1): 4-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198501000.htm

    JIN Qiang, HUANG Xinghan. Discussion on the origin of the salt lake in the early Tertiary of Dongpu Depression: a deep-water genetic model[J]. Journal of China University of Petroleum (Edition of Natural Science), 1985(1): 4-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198501000.htm
    [44]
    余宽宏, 操应长, 邱隆伟, 等. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理[J]. 天然气地球科学, 2016, 27(7): 1248-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201607010.htm

    YU Kuanhong, CAO Yingchang, QIU Longwei, et al. Brine evolution of ancient lake and mechanism of carbonate minerals during the sedimentation of Early Permian Fengcheng Formation in Mahu Depression, Junggar Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1248-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201607010.htm
    [45]
    胡见义, 黄第藩, 徐树宝, 等. 中国陆相石油地质理论基础[M]. 北京: 石油工业出版社, 1991.

    HU Jianyi, HUANG Difan, XU Shubao, et al. The foundation of China continental petroleum geology theory[M]. Beijing: Petroleum Industry Press, 1991.
    [46]
    JONES R W. Organic facies[C]//BROOKS J, WELTE D H. Advances in Petroleum Geochemistry. London: Academic Press, 1987: l-90.
    [47]
    陈安宁, 耿国仓, 秦仲碧, 等. 鄂尔多斯地区上古生界煤系沉积有机相及成烃能力, 煤成气研究[M]. 北京: 石油业出版社, 1987.

    CHEN Anning, GENG Guocang, QIN Zhongbi, et al. Organic facies and hydrocarbon generation ability of Upper Paleozoic coal-bearing sediments in Ordos Basin, the study of coal generated gas[M]. Beijing: Petroleum Industry Press, 1987.
    [48]
    郝芳, 陈建渝, 孙永传, 等. 有机相研究及其在盆地分析中的应用[J]. 沉积学报, 1994, 12(4): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.008.htm

    HAO Fang, CHEN Jianyu, SUN Yongchuan, et al. Organic facies studies and their use in sedimentary basin analysis[J]. Acta Sedimentologica Sinica, 1994, 12(4): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.008.htm
    [49]
    金奎励, 李荣西. 烃源岩组分组合规律及其意义[J]. 天然气地球科学, 1998, 9(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199801003.htm

    JIN Kuili, LI Rongxi. The law of composition combination of source rock and its significance[J]. Natural Gas Geoscience, 1998, 9(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199801003.htm
    [50]
    朱创业. 海相碳酸盐岩沉积有机相研究及其在油气资源评价中的应用[J]. 成都大学学报: 自然科学版, 2000, 19(1): 1-6. doi: 10.3969/j.issn.1004-342X.2000.01.001

    ZHU Chuangye. Sedimentary organic facies studies of marine carbonate rocks and their use in petroleum resouce evaluation[J]. Acta Scientiarum Naturalium Universitatis Chengduensis, 2000, 19(1): 1-6. doi: 10.3969/j.issn.1004-342X.2000.01.001
    [51]
    邓宏文, 钱凯. 深湖相泥岩的成因类型和组合演化[J]. 沉积学报, 1990, 8(3): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003000.htm

    DENG Hongwen, QIAN Kai. The genetic types and association evolution of deep lacustrine facies mudstones[J]. Acta Sedimentologica Sinica, 1990, 8(3): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003000.htm
    [52]
    张文正, 杨华, 杨奕华, 等. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J]. 地球化学, 2008, 37(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801008.htm

    ZHANG Wenzheng, YANG Hua, YANG Yihua, et al. Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin[J]. Geochimica, 2008, 37(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801008.htm
    [53]
    张文正, 杨华, 彭平安, 等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学, 2009, 38(6): 573-582. doi: 10.3321/j.issn:0379-1726.2009.06.007

    ZHANG Wenzheng, YANG Hua, PENG Ping'an, et al. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582. doi: 10.3321/j.issn:0379-1726.2009.06.007
    [54]
    拜文华, 吴彦斌, 高智梁, 等. 浅湖-半深湖相湖湾环境油页岩成矿富集机理研究[J]. 地质调查与研究, 2010, 33(3): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201003010.htm

    BAI Wenhua, WU Yanbin, GAO Zhiliang, et al. Study on the mechanism of oil shale minerogenetic enrichmen in the arm of shallow to half-deep lake depositional environment[J]. Geolo-gicalSurvey and Research, 2010, 33(3): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201003010.htm
    [55]
    黄保家, 黄合庭, 吴国瑄, 等. 北部湾盆地始新统湖相富有机质页岩特征及成因机制[J]. 石油学报, 2012, 33(1): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201002.htm

    HUANG Baojia, HUANG Heting, WU Guoxuan, et al. Geochemical characteristics and formation mechanism of Eocene lacustrine organic-rich shales in the Beibuwan Basin[J]. Acta Petrolei Sinica, 2012, 33(1): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201002.htm
    [56]
    中国科学院兰州地质研究所. 青海湖综合考察报告[M]. 北京: 科学出版社, 1979.

    Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, CAS. Comprehensive investigation report of Qinghai Lake[M]. Beijing: Science Press, 1979.
    [57]
    中国科学院南京地理与湖泊研究所. 云南断陷湖泊环境与沉积[M]. 北京: 科学出版社, 1989.

    Nanjing Institute of Geography and Limnology (NIGL). Environment and sedimentology of fault lakes, Yunnan Province[M]. Beijing: Science Press, 1989.
    [58]
    中国科学院南京地理与湖泊研究所. 中国湖泊概论[M]. 北京: 科学出版社, 1989.

    Nanjing Institute of Geography and Limnology (NIGL) of Chinese Academy of Sciences. An introduction of Chinese lakes[M]. Beijing: Science Press, 1989.
    [59]
    贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [60]
    杨智, 侯连华, 林森虎, 等. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力[J]. 中国石油勘探2018, 23(4): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804010.htm

    YANG Zhi, HOU Lianhua, LIN Senhu, et al. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar Sag[J]. China Petroleum Exploration, 2018, 23(4): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804010.htm
    [61]
    HU Tao, PANG Xiongqi, WANG Qifeng, et al. Geochemical and geological characteristics of Permian Lucaogou Formation shale of the well Ji174, Jimusar Sag, Junggar Basin, China: implications for shale oil exploration[J]. Geological Journal, 2018, 53(5): 2371-2385. doi: 10.1002/gj.3073
    [62]
    HU Tao, PANG Xiongqi, WANG Xulong, et al. Source rock characteristics of Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin, Northwest China, and its significance on tight oil source and occurrence[J]. Geological Journal, 2017, 52(4): 624-645. doi: 10.1002/gj.2818
    [63]
    PANG Hong, PANG Xiongqi, DONG Li, et al. Factors impacting on oil retention in lacustrine shale: Permian Lucaogou Formation in Jimusaer Depression, Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2018, 163: 79-90. doi: 10.1016/j.petrol.2017.12.080
    [64]
    LIU Chang, LIU Keyu, WANG Xiaoqi, et al. Chemostratigraphy and sedimentary facies analysis of the Permian Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China: implications for tight oil exploration[J]. Journal of Asian Earth Sciences, 2019, 178: 96-111. doi: 10.1016/j.jseaes.2018.04.013
    [65]
    支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm

    ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm
    [66]
    杜韫华. 中国湖相碳酸盐岩油气储层[J]. 陆相石油地质, 1992, 6(2): 25-37.

    DU Yunhua. Chinese lacustrine carbonate oil and gas reservoirs[J]. Continental Petroleum Geology, 1992, 6(2): 25-37.
    [67]
    杜景霞, 石文武, 周贺, 等. 渤海湾盆地南堡凹陷火山岩锆石年代学及形成模式[J]. 石油与天然气地质, 2014, 35(5): 742-748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201405022.htm

    DU Jingxia, SHI Wenwu, ZHOU He, et al. Zircon U-Pb age and formation model of volcanic rocks from Nanpu Sag of Bohai Bay Basin[J]. Oil & Gas Geology, 2014, 35(5): 742-748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201405022.htm
    [68]
    宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm

    SONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm
    [69]
    PANCOST R D, FREEMAN K H, PATZKOWSKY M E. Organic-matter source variation and the expression of a late Middle Ordovician carbon isotope excursion[J]. Geology, 1999, 27(11): 1015-1018.
    [70]
    WILSON M J, WILSON L, SHALDYBIN M V. Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. Ⅱ. Implications of predominantly illitic clays on the physico-chemical properties of shales[J]. Earth-Science Reviews, 2016, 158: 1-8.
    [71]
    姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm

    YAO Jingli, DENG Xiuqin, ZHAO Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm
    [72]
    杨华, 张文正. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502006.htm

    YANG Hua, ZHANG Wenzheng. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502006.htm
    [73]
    邱欣卫, 刘池洋, 李元昊, 等. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义[J]. 沉积学报, 2009, 27(6): 1138-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906017.htm

    QIU Xinwei, LIU Chiyang, LI Yuanhao, et al. Distribution characte-ristics and geological significances of Tuff interlayers in Yanchang Formation of Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1138-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906017.htm
    [74]
    贾承造, 郑民, 张永峰. 非常规油气地质学重要理论问题[J]. 石油学报, 2014, 35(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401001.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Four important theoretical issues of unconventional petroleum geology[J]. Acta Petrolei Sinica, 2014, 35(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401001.htm
    [75]
    KATSUBE T J, WILLIAMSON M, BEST M. Shale pore structure evolution and its effect on permeability[C]//SCA Conference Paper Number 9214. [s. l. ]: SCA, 1992: 1-22.
    [76]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
    [77]
    KLAVER J, DESBOIS G, URAI J L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany[J]. International Journal of Coal Geo-logy, 2012, 103: 12-25.
    [78]
    MATTHEWS M D. Migration: a view from the top[C]//SCHUMACHER D, ABRAMS M A. Hydrocarbon migration and its near-surface expression, AAPG memoir 66. Tulsa: AAPG, 1996: 139-155.
    [79]
    SONDERGELD C H, NEWSHAM K E, COMISKY J T, et al. Petrophysical considerations in evaluating and producing shale gas resources[C]//SPE Unconventional Gas Conference, Pittsburgh, PA, 23-25 February, SPE 131768-MS. Pittsburgh, PA: SPE, 2010: 1-34.
    [80]
    JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
    [81]
    AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[C]//Society of Petroleum Engineers. Pittsburgh, Pennsylvania: SPE, 2010.
    [82]
    胡钦红, 张宇翔, 孟祥豪, 等. 渤海湾盆地东营凹陷古近系沙河街组页岩油储集层微米-纳米级孔隙体系表征[J]. 石油勘探与开发, 2017, 44(5): 681-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705004.htm

    HU Qinhong, ZHANG Yuxiang, MENG Xianghao, et al. Characte-rization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2017, 44(5): 681-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705004.htm
    [83]
    EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
    [84]
    BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties: some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14.
    [85]
    郭春清, 沈忠民, 张林晔, 等. 砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J]. 地质地球化学, 2003, 31(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200303010.htm

    GUO Chunqing, SHEN Zhongmin, ZHANG Linye, et al. The corrosion and its mechanism of organic acids on main minerals in oil-gas reservoir sand rocks[J]. Geology-eochemistry, 2003, 31(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200303010.htm
    [86]
    丁伟铭, 甯濛, 秦树健, 等. 辽宁西部北票地区高于庄组白云岩沉积特征研究[J]. 北京大学学报(自然科学版), 2019, 55(6): 1055-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201906009.htm

    DING Weiming, NING Meng, QIN Shujian, et al. Sedimentary characteristics of dolomite from Gaoyuzhuang Formation in Beipiao area, North China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(6): 1055-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201906009.htm
    [87]
    张晋言. 页岩油测井评价方法及其应用[J]. 地球物理学进展, 2012, 27(3): 1154-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203041.htm

    ZHANG Jinyan. Well logging evaluation method of shale oil reservoirs and its applications[J]. Progress in Geophysics, 2012, 27(3): 1154-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203041.htm
    [88]
    潘仁芳, 黎建, 李坤运. 川东建南地区页岩成熟度模拟分析[J]. 长江大学学报(自然科学版), 2011, 8(11): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201111001.htm

    PAN Renfang, LI Jian, LI Kunyun. Maturity simulation analysis of Jiannan shale in east Sichuan[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(11): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201111001.htm
    [89]
    VERNIK L. Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics[J]. Geophysics, 1994, 59(2): 420-427.
    [90]
    CARCIONE J M. AVO effects of a hydrocarbon source-rock layer[J]. Geophysics, 2001, 66(2): 419-427.
    [91]
    BERETTA M M, BERNASCONI G, DRUFUCA G. AVO and AVA inversion for fractured reservoir characterization[J]. Geophysics, 2002, 67(1): 300-306.
    [92]
    STOVAS A, LANDRØ M. Fluid-pressure discrimination in anisotropic reservoir rocks: a sensitivity study[J]. Geophysics, 2005, 70(3): 1-11.
    [93]
    NELSON R A, MOLDOVANYI E P, MATCEK C C, et al. Production characteristics of the fractured reservoirs of the La Paz field, Maracaibo Basin, Venezuela[J]. AAPG Bulletin, 2000, 84(11): 1791-1809.
    [94]
    高伟, 刘安, 费世祥, 等. 库车坳陷大北地区深部储层裂缝综合评价[J]. 石油地质与工程, 2012, 26(3): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201203012.htm

    GAO Wei, LIU An, FEI Shixiang, et al. Comprehensive evaluation of deep reservoir fractures in Dabei area of Kuqa Depression[J]. Petroleum Geology and Engineering, 2012, 26(3): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201203012.htm
    [95]
    周新桂, 张林炎, 范昆. 油气盆地低渗透储层裂缝预测研究现状及进展[J]. 地质论评, 2006, 52(6): 777-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200606007.htm

    ZHOU Xingui, ZHANG Linyan, FAN Kun. The research situation and progresses of natural fracture for low permeability reservoirs in oil and gas basin[J]. Geological Review, 2006, 52(6): 777-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200606007.htm
    [96]
    张守仁, 张遂安, 万贵龙. 构造裂缝发育区带预测的有效方法: 以北大港构造带东翼东营组为例[J]. 中国石油勘探, 2012(2): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201202009.htm

    ZHANG Shouren, ZHANG Suian, WAN Guilong. An effective method for predicting the development zone of structural fractures: taking Dongying Formation in the east of Beidagang structural belt as an example[J]. China Petroleum Exploration, 2012(2): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201202009.htm
    [97]
    TAYLOR K G, MACQUAKER J H S. Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England[J]. Sedimentary Geology, 2000, 131(1/2): 77-86.
    [98]
    APLIN A C, MATENAAR I F, MCCARTY D K, et al. Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water gulf of Mexico mudstones[J]. Clays and Clay Minerals, 2006, 54(4): 500-514.
    [99]
    BERG R R, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.
    [100]
    CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [101]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [102]
    BERTHONNEAU J, GRAUBY O, ABUHAIKAL M, et al. Evolution of organo-clay composites with respect to thermal maturity in type Ⅱ organic-rich source rocks[J]. Geochimica et Cosmochimica Acta, 2016, 195: 68-83.
    [103]
    BU Hongling, YUAN Peng, LIU Hongmei, et al. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis[J]. Geochimica et Cosmochimica Acta, 2017, 212: 1-15.
    [104]
    HOWER J, ESLINGER E V, HOWER M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737.
    [105]
    GHANIZADEH A, AMANN-HILDENBRAND A, GASPARIK M, et al. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: Ⅱ. Posidonia shale (Lower Toarcian, northern Germany)[J]. International Journal of Coal Geology, 2014, 123: 20-33.
    [106]
    CRADDOCK P R, VAN LE DOAN T, BAKE K, et al. Evolution of kerogen and bitumen during thermal maturation via semi-open pyrolysis investigated by infrared spectroscopy[J]. Energy Fuels, 2015, 29(4): 2197-2210.
    [107]
    ŚRODOŃ J. Nature of mixed-layer clays and mechanisms of their formation and alteration[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 19-53.
    [108]
    LAZAR O R, BOHACS K M, SCHIEBER J, et al. Mudstone primer: lithofacies variations, diagnostic criteria, and sedimentologic-stratigraphic implications at lamina to bedset scales[J]. SEPM Society for Sedimentary Geology, 2015, 12: 25-40.
    [109]
    KHALIL K, RABOUILLE C, GALLINARI M, et al. Constraining biogenic silica dissolution in marine sediments: a comparison between diagenetic models and experimental dissolution rates[J]. Marine Chemistry, 2007, 106(1/2): 223-238.
    [110]
    SASS E, BEIN A, ALMOGI-LABIN A. Oxygen-isotope composition of diagenetic calcite in organic-rich rocks: evidence for 18O depletion in marine anaerobic pore water[J]. Geology, 1991, 19(8): 839-842.
    [111]
    BARTH T, BJØRLYKKE K. Organic acids from source rock maturation: generation potentials, transport mechanisms and relevance for mineral diagenesis[J]. Applied Geochemistry, 1993, 8(4): 325-337. doi: 10.1016/0883-2927(93)90002-X
    [112]
    MORAD S, KETZER J M, DE ROS L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basin[J]. Sedi-mentology, 2000, 47(1): 95-120.
    [113]
    SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. doi: 10.1038/nature02132
    [114]
    SCHENK C J, BROWNFIELD M E, CHARPENTIER R R, et al. Assessment of undiscovered oil and gas resources of southeast Asia, 2010[M]. Denver: U.S. Geological Survey, 2010: 3015.
    [115]
    LIU Xiandong, CHENG Jun, SPRIK M, et al. Interfacial structures and acidity of edge surfaces of ferruginous smectites[J]. Geochimica et Cosmochimica Acta, 2015, 168: 293-301. doi: 10.1016/j.gca.2015.07.015
    [116]
    LIANG Chao, CAO Yingchang, JIANG Zaixing, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: implications for geochemistry and reservoir characte-ristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858. doi: 10.1306/01251715249
    [117]
    KLETT J, HARDY R, ROMINE E, et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties[J]. Carbon, 2000, 38(7): 953-973. doi: 10.1016/S0008-6223(99)00190-6
    [118]
    LI Lei, SHENG J J, XU Jinze. Gas selection for huff-n-puff EOR in shale oil reservoirs based upon experimental and numerical study[C]//SPE Unconventional Resources Conference, Society of Petroleum Engineers, 2017, 15-16 February, Calgary, Alberta, Canada, SPE-185066-MS. Calgary, Alberta, Canada: SPE, 2017.
    [119]
    庞雄奇, 陈章明, 陈发景. 排油气门限的基本概念、研究意义与应用[J]. 现代地质, 1997, 11(4): 510-521. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ704.011.htm

    PANG Xiongqi, CHEN Zhangming, CHEN Fajing. Basic concept of hydrocarbon expulsion threshod and its research significance and application[J]. Geoscience, 1997, 11(4): 510-521. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ704.011.htm
    [120]
    INAN S, YALÇIN M N, MANN U. Expulsion of oil from petroleum source rocks: inferences from pyrolysis of samples of unconventional grain size[J]. Organic Geochemistry, 1998, 29(1/3): 45-61.
    [121]
    王飞宇, 李洋冰, 曾花森, 等. 渤海湾盆地渤中坳陷气油比的控制因素及勘探意义[J]. 中国海上油气, 2006, 18(5): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200605000.htm

    WANG Feiyu, LI Yangbing, ZENG Huasen, et al. Factors to control GOR and its exploration implications in Bozhong Depression, Bohai Bay Basin[J]. China Offshore Oil and Gas, 2006, 18(5): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200605000.htm
    [122]
    HORSFIELD B, MUSCIO G P, GRICE K, et al. Gas generation and retention in the Bakken shale, Williston Basin[C]//AAPG Annual Convention. San Antonio, TX: AAPG, 2008.
    [123]
    TEGELAAR E W, NOBLE R A. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography[J]. Organic Geochemistry, 1994, 22(3/5): 543-574.
    [124]
    PEPPER A, CORVI P J. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-E
    [125]
    陈敬轶, 王飞宇. 渤海湾盆地板桥凹陷烃源灶与油气生成[J]. 科技导报, 2010, 28(6): 78-82. doi: 10.3969/j.issn.1009-6108.2010.06.038

    CHEN Jingyi, WANG Feiyu. Characteristics of source kitchen and hydrocarbon generation in Banqiao Sag, Bohaiwan Basin[J]. Science & Technology Review, 2010, 28(6): 78-82. doi: 10.3969/j.issn.1009-6108.2010.06.038
    [126]
    LI Z M, GUAN D F, XU X H, et al. Hydrocarbon generation and expulsion from argillaceous dolostones in confined systems and implication for lacustrine shale oils[C]//International Symposium on Shale Oil Resources and Exploitation Techno-logies. Wuxi, China, 2012.
    [127]
    郝芳, 邹华耀, 倪建华, 等. 沉积盆地超压系统演化与深层油气成藏条件[J]. 地球科学(中国地质大学学报), 2002, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm

    HAO Fang, ZOU Huayao, NI Jianhua, et al. Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation[J]. Earth Science(Journal of China University of Geosciences), 2002, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm
    [128]
    WEI Zhifu, ZOU Yanrong, CAI Yulan, et al. Kinetics of oil group-type generation and expulsion: an integrated application to Dongying Depression, Bohai Bay Basin, China[J]. Organic Geochemistry, 2012, 52: 1-12. doi: 10.1016/j.orggeochem.2012.08.006
    [129]
    苗建宇, 祝总祺, 刘文荣, 等. 泥质岩有机质的赋存状态及其对泥质岩封盖能力的影响[J]. 沉积学报, 1999, 17(3): 478-481. doi: 10.3969/j.issn.1000-0550.1999.03.023

    MIAO Jianyu, ZHU Zongqi, LIU Wenrong, et al. Occurrence of organic matter and its effect on sealing ability of argillaceous rock[J]. Acta Sedimentologica Sinica, 1999, 17(3): 478-481. doi: 10.3969/j.issn.1000-0550.1999.03.023
    [130]
    付广, 薛永超, 付晓飞. 有机质类型及演化阶段对泥岩盖层浓度封闭作用的影响[J]. 断块油气田, 2000, 7(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200005000.htm

    FU Guang, XUE Yongchao, FU Xiaofei. Influence of organic type and its evolution stage on concentration sealing of mudstone caprock[J]. Fault-Block Oil & Gas Field, 2000, 7(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200005000.htm
    [131]
    陈祥, 王敏, 严永新, 等. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质, 2011, 32(4): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104013.htm

    CHEN Xiang, WANG Min, YAN Yongxin, et al. Accumulation conditions for continental shale oil and gas in the Biyang Depression[J]. Oil & Gas Geology, 2011, 32(4): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104013.htm
    [132]
    ZHANG Shanwen, WANG Yongshi, SHI Dishi, et al. Fault-fracture mesh petroleum plays in the Jiyang Superdepression of the Bohai Bay Basin, Eastern China[J]. Marine and Petroleum Geology, 2004, 21(6): 651-668. doi: 10.1016/j.marpetgeo.2004.03.007
    [133]
    蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [134]
    LI Maowen, MA Xiaoxiao, LI Zhiming, et al. Emerging shale oil plays in hypersaline lacustrine Qianjiang Formation, Jianghan Basin, Central China[C]//Unconventional Resources Technology Conference (URTeC). Houston, Texas, USA: SPE, 2018.
    [135]
    马晓潇, 黎茂稳, 庞雄奇, 等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质, 2016, 38(2): 278-286. doi: 10.11781/sysydz201602278

    MA Xiaoxiao, LI Maowen, PANG Xiongqi, et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(2): 278-286. doi: 10.11781/sysydz201602278
    [136]
    MA Xiaoxiao, LI Maowen, PANG Xiongqi, et al. Paradox in bulk and molecular geochemical data and implications for hydrocarbon migration in the inter-salt lacustrine shale oil reservoir, Qianjiang Formation, Jianghan Basin, Central China[J]. International Journal of Coal Geology, 2019, 209: 72-88. doi: 10.1016/j.coal.2019.05.005
    [137]
    MA Yuanyuan, CAO Tingting, SNOWDON L, et al. Impact of different experimental heating rates on calculated hydrocarbon generation kinetics[J]. Energy & Fuels, 2017, 31(10): 10378-10392.
    [138]
    CHEN Zhuoheng, LI Maowen, CAO Tingting, et al. Hydrocarbon generation kinetics of a heterogeneous source rock system: example from the lacsutrine Eocene-Oligocene Shahejie Formation, Bohai Bay Basin, China[J]. Energy & Fuels, 2017, 31(12): 13291-13304.
    [139]
    LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. A numerical method for calculating total oil yield using a single routine Rock-Eval program: a case study of the Eocene Shahejie Formation in Dongying Depression, Bohai Bay Basin, China[J]. International Journal of Coal Geology, 2018, 191: 49-65. doi: 10.1016/j.coal.2018.03.004
    [140]
    LI Maowen, CHEN Zhuoheng, CAO Tingting, et al. Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001
    [141]
    CHEN Zhuoheng, LI Maowen, MA Xiaoxiao, et al. Generation kinetics based method for correcting effects of migrated oil on Rock-Eval date: an example from the Eocene Qianjiang Formation, Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 195: 84-101. doi: 10.1016/j.coal.2018.05.010
    [142]
    LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. doi: 10.1016/j.coal.2019.01.013
    [143]
    PAN Yinhua, LI Maowen, SUN Yongge, et al. Characterization of free and bound bitumen fractions in a thermal maturation shale sequence. Part 1: acidic and neutral compounds by negative-ion ESI FT-ICR MS[J]. Organic Geochemistry, 2019, 134: 1-15. doi: 10.1016/j.orggeochem.2019.05.005
    [144]
    谌卓恒, 黎茂稳, 姜春庆, 等. 页岩油的资源潜力及流动性评价: 以西加拿大盆地上泥盆统Duvernay页岩为例[J]. 石油与天然气地质, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm

    CHEN Zhuoheng, LI Maowen, JIANG Chunqing, et al. Shale oil resource potential and its mobility assessment: a case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin[J]. Oil & Gas Geology, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm
    [145]
    LI Maowen, CHEN Zhuoheng, QIAN Menhui, et al. What are in pyrolysis S1 peak and what are missed? Petroleum compositional characteristics revealed from programed pyrolysis and implications for shale oil mobility and resource potential[J]. International Journal of Coal Geology, 2020, 217: 103321. doi: 10.1016/j.coal.2019.103321
    [146]
    LI Zheng, ZOU Yanrong, XU Xingyou, et al. Adsorption of mudstone source rock for shale oil-Experiments, model and a case study[J]. Organic Geochemistry, 2016, 92: 55-62. doi: 10.1016/j.orggeochem.2015.12.009
    [147]
    ZOU Yanrong, SUN Jianan, LI Zheng, et al. Evaluating shale oil in the Dongying Depression, Bohai Bay Basin, China, using the oversaturation zone method[J]. Journal of Petroleum Science and Engineering, 2018, 161: 291-301. doi: 10.1016/j.petrol.2017.11.059
    [148]
    HUANG Zhenkai, LI Maowen, LIU Quanyou, et al. Hydrocarbon generation and evolution of the source rocks of the lower Es3 and upper Es4 members of the Shahejie Formation in the Niuzhuang Sub-sag, Jiyang Depression, Bohai Bay Basin, Eastern China[J]. Interpretation, 2018, 6(4): SN11-SN21. doi: 10.1190/INT-2018-0013.1
    [149]
    HUANG Zhenkai, LIANG Tian, ZHAN Zhaowen, et al. Chemical structure evolution of kerogen during oil generation[J]. Marine and Petroleum Geology, 2018, 98: 422-436. doi: 10.1016/j.marpetgeo.2018.08.039
    [150]
    周庆凡, 杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htm

    ZHOU Qingfan, YANG Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201204009.htm
    [151]
    武晓玲, 高波, 叶欣, 等. 中国东部断陷盆地页岩油成藏条件与勘探潜力[J]. 石油与天然气地质, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm

    WU Xiaoling, GAO Bo, YE Xin, et al. Shale oil accumulation conditions and exploration potential of faulted basins in the east of China[J]. Oil & Gas Geology, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm
    [152]
    张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm

    ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
    [153]
    邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013.

    ZOU Caineng, TAO Shizhen, HOU Lianhua, et al. Unconventional petroleum geology[M]. 2nd ed. Beijing: Geological Publishing House, 2013.
    [154]
    姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm

    JIANG Zaixing, ZHANG Wenzhao, LIANG Chao, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
    [155]
    ZOU Caineng, XU Jin, ZHU Rukai, et al. Do shale pore throats have a threshold diameter for oil storage?[J]. Scientific Reports, 2015, 5(1): 13619. doi: 10.1038/srep13619
    [156]
    WU Qihua, OK J T, SUN Yongpeng, et al. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels[J]. Lab on a Chip, 2013, 13(6): 1165-1171. doi: 10.1039/c2lc41259d
    [157]
    NAGAYAMA G, CHENG Ping. Effects of interface wettability on microscale flow by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2004, 47(3): 501-513. doi: 10.1016/j.ijheatmasstransfer.2003.07.013
    [158]
    JIN Zhehui, FIROOZABADI A. Phase behavior and flow in shale nanopores from molecular simulations[J]. Fluid Phase Equilibria, 2016, 430: 156-168. doi: 10.1016/j.fluid.2016.09.011
    [159]
    WANG Sen, FENG Qihong, JAVADPOUR F, et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015, 147-148: 9-24. doi: 10.1016/j.coal.2015.06.002
    [160]
    田同辉, 徐耀东, 晁静. 济阳坳陷页岩油勘探开发目标评价[R]. 青岛, 中国石油大学(华东), 2018: 1-40.

    TIAN Tonghui, XU Yaodong, ZHAO Jing. Evaluation of shale oil exploration and development goals in Jiyang Depression[R]. Qingdao, China University of Petroleum, 2018: 1-40.
    [161]
    杨智, 侯连华, 陶士振, 等. 致密油与页岩油形成条件与"甜点区"评价[J]. 石油勘探与开发, 2015, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm

    YANG Zhi, HOU Lianhua, TAO Shizhen, et al. Formation conditions and "sweet spot" evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm
    [162]
    YAN Bicheng, WANG Yuhe, KILLOUGH J E. Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs[J]. Computational Geosciences, 2016, 20(1): 69-91.
    [163]
    ZHANG Min, YAO Jun, SUN Hai, et al. Triple-continuum mode-ling of shale gas reservoirs considering the effect of kerogen[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 252-263.
    [164]
    AKKUTLU I Y, FATHI E. Multiscale gas transport in shales with local kerogen heterogeneities[J]. SPE Journal, 2012, 17(4): 1002-1011.
    [165]
    AZOM P N, JAVADPOUR F. Dual-continuum modeling of shale and tight gas reservoirs[C]//SPE Annual Technical Conference and Exhibition, 2012, 8-10 October. San Antonio, Texas, USA: SPE, 2012.
    [166]
    董明哲, 李亚军, 桑茜, 等. 页岩油流动的储层条件和机理[J]. 石油与天然气地质, 2019, 40(3): 636-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903019.htm

    DONG Mingzhe, LI Yajun, SANG Qian, et al. Reservoir conditions and mechanism of shale oil flow[J]. Oil & Gas Geology, 2019, 40(3): 636-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903019.htm
    [167]
    QIU Zhen, ZOU Caineng. Controlling factors on the formation and distribution of "sweet-spot areas" of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2019: 103989.
    [168]
    邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101001.htm

    QIU Zhen, ZOU Caineng. Unconventional petroleum sedimentology: connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101001.htm
    [169]
    HILL D G, NELSON C R. Gas productive fractured shales: an overview and update[J]. Gas TIPS, 2000, 6(2): 4-13.
    [170]
    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm
    [171]
    马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [172]
    邱振, 卢斌, 施振生, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学, 2016, 27(10): 1817-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201610007.htm

    QIU Zhen, LU Bin, SHI Zhensheng, et al. Residual accumulation and resource assessment of shale oil from the Permian Lucaogou Formation in Jimusar Sag[J]. Natural Gas Geoscience, 2016, 27(10): 1817-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201610007.htm
    [173]
    王勇, 刘惠民, 宋国奇, 等. 济阳坳陷页岩油富集要素与富集模式研究[J]. 高校地质学报, 2017, 23(2): 268-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702009.htm

    WANG Yong, LIU Huimin, SONG Guoqi, et al. Enrichment controls and models of shale oil in the Jiyang Depression, Bohai Bay Basin[J]. Geological Journal of China Universities, 2017, 23(2): 268-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702009.htm
    [174]
    董明哲, 姚军, 秦学杰, 等. 陆相页岩油储集性能与流动机理[R]. 青岛, 中国石油大学(华东), 2018: 20-50.

    DONG Mingzhe, YAO Jun, QIN Xuejie, et al. Reservoir property and flow mechanism of continental shale oil[R]. Qingdao, China University of Petroleum, 2018: 20-50.
    [175]
    郝运轻, 谢忠怀, 周自立, 等. 非常规油气勘探领域泥页岩综合分类命名方案探讨[J]. 油气地质与采收率, 2012, 19(6): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201206008.htm

    HAO Yunqing, XIE Zhonghuai, ZHOU Zili, et al. Discussion on multi-factors identification of mudstone and shale[J]. Petro-leum Geology and Recovery Efficiency, 2012, 19(6): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201206008.htm
    [176]
    涂其军, 王刚. 准噶尔盆地南缘中二叠统页岩矿物学和地球化学特征及地质意义[J]. 新疆地质, 2018, 36(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201804008.htm

    TU Qijun, WANG Gang. The mineralogy and geochemistry of the Middle Permian Lucaogou Formation shales in the southern Junggar Basin, Xinjiang Province and its geological significance[J]. Xinjiang Geology, 2018, 36(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201804008.htm
    [177]
    王正波, 岳湘安, 韩冬. 粘土矿物及流体对低渗透岩心渗流特性的影响[J]. 油气地质与采收率, 2007, 14(2): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200702025.htm

    WANG Zhengbo, YUE Xiang'an, HAN Dong. Effect of clay mineral and fluid on flow characteristics of the low-permeability cores[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(2): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200702025.htm
    [178]
    梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm

    LIANG Jianwei, FANG Yingguang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
    [179]
    SKIPPER N T, LOCK P A, TITILOYE J O, et al. The structure and dynamics of 2-dimensional fluids in swelling clays[J]. Chemical Geology, 2006, 230(3/4): 182-196.
    [180]
    魏景明, 杨华明, 朱建喜, 等. 有机蒙脱石层间微结构的分子模拟[J]. 矿物岩石, 2009, 29(1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200901006.htm

    WEI Jingming, YANG Huaming, ZHU Jianxi, et al. Molecular dynamic simulation on interlayer micro-structure in organic montmorilionite[J]. Journal of Mineralogy and Petrology, 2009, 29(1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200901006.htm
    [181]
    姜建伟, 于春生, 周雨朦. 考虑润湿性的黏土膨胀模型研究及其应用[J]. 石油地质与工程, 2016, 30(2): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201602025.htm

    JIANG Jianwei, YU Chunsheng, ZHOU Yumeng. Research and application of clay expansion model considering wettability[J]. Petroleum Geology and Engineering, 2016, 30(2): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201602025.htm
    [182]
    SANG Qian, ZHANG Shaojie, LI Yajun, et al. Determination of organic and inorganic hydrocarbon saturations and effective porosi-ties in shale using vacuum-imbibition method[J]. International Journal of Coal Geology, 2018, 200: 123-134.
    [183]
    LI Sheng, SANG Qian, DONG Mingzhe, et al. Determination of inorganic and organic permeabilities of shale[J]. International Journal of Coal Geology, 2019, 215: 103296.
    [184]
    JIA B, TSAU J S, BARATI R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs[J]. Fuel, 2019, 236: 404-427.
    [185]
    NGUYEN D, WANG Dongmei, OLADAPO A, et al. Evaluation of surfactants for oil recovery potential in shale reservoirs[C]//SPE Improved Oil Recovery Symposium, 2014, 12-16 April. Tulsa, Oklahoma, USA: SPE, 2014.
    [186]
    LIU Junrong, SHENG J J. Experimental investigation of surfactant enhanced spontaneous imbibition in Chinese shale oil reservoirs using NMR tests[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 414-422.
    [187]
    SHULER P J, TANG Hongxin, LU Z, et al. Chemical process for improved oil recovery from Bakken shale[C]//Canadian Unconventional Resources Conference, 2011, 15-17 November. Calgary, Alberta, Canada: SPE, 2011.
    [188]
    WANG Dongmei, BUTLER R, ZHANG Jin, et al. Wettability survey in Bakken shale with surfactant-formulation imbibition[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(6): 695-705.
    [189]
    WANG Dongmei, ZHANG Jin, BUTLER R, et al. Scaling laboratory-data surfactant-imbibition rates to the field in fractured-shale formations[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(3): 440-449.
    [190]
    SHENG J, CHEN Ke. Evaluation of the EOR potential of gas and water injection in shale oil reservoirs[J]. Journal of Unconventional Oil and Gas Resources, 2014, 5: 1-9.
    [191]
    WANG Xiaoqi, LUO Peng, ER V, et al. Assessment of CO2 flooding potential for Bakken Formation, Saskatchewan[C]//Canadian Unconventional Resources and International Petro-leum Conference. Society of Petroleum Engineers, 2010, 19-21 October. Calgary, Alberta, Canada: SPE, 2010.
    [192]
    SONG Chengyao, YANG Daoyong. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190: 145-162.
    [193]
    JARBOE P J, CANDELA P A, ZHU Wenlu, et al. Extraction of hydrocarbons from high-maturity Marcellus shale using supercritical carbon dioxide[J]. Energy & Fuels, 2015, 29(12): 7897-7909.
    [194]
    JIN Lu, HAWTHORNE S, SORENSEN J, et al. Advancing CO2 enhanced oil recovery and storage in unconventional oil play: experimental studies on Bakken shales[J]. Applied Energy, 2017, 208: 171-183.
    [195]
    GAMADI T D, SHENG J J, SOLIMAN M Y, et al. An experimental study of cyclic CO2 injection to improve shale oil recovery[C]//SPE Improved Oil Recovery Symposium, 12-16 April. Tulsa, Oklahoma, USA: SPE, 2014: 1-9.
    [196]
    JIANG Yongdong, LUO Yahuang, LU Yiyu, et al. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale[J]. Energy, 2016, 97: 173-181.
    [197]
    YIN Hong, ZHOU Junping, JIANG Yongdong, et al. Physical and structural changes in shale associated with supercritical CO2 exposure[J]. Fuel, 2016, 184: 289-303.
    [198]
    PSARRAS P, HOLMES R, VISHAL V, et al. Methane and CO2 adsorption capacities of kerogen in the Eagle Ford shale from molecular simulation[J]. Accounts of Chemical Research, 2017, 50(8): 1818-1828.
    [199]
    聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm

    NIE Haikuan, ZHANG Peixian, BIAN Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm
    [200]
    LI M, OSADETZ K G, FOWLER M G, et al. Case studies on secondary oil migration in the Williston Basin[C]//Eighth International Williston Basin Symposium, October 19, 20, and 21. [s. l. ]: AAPG, 1998: 247-253.
    [201]
    JARVIE D M. Shale resource systems for oil and gas: part 2—shale-oil resource systems[M]//AAPG Memoir 97. Tulsa: AAPG, 2012: 89-119.
    [202]
    BREYER J A. Shale reservoirs: giant resources for the 21st century[M]//AAPG Memoir 97. Tulsa: AAPG, 2012.
    [203]
    BREYER J. Front matter and introduction: the Eagle Ford shale: a renaissance in U.S. oil production[M]//AAPG Memoir 110. Tulsa: AAPG, 2016.
    [204]
    WOOD L J. Shale tectonics[M]//AAPG Memoir 93. Tulsa: AAPG, 2010.
    [205]
    CAMP W K, DIAZ E, WAWAK B. Electron microscopy of shale hydrocarbon reservoirs[M]//AAPG Memoir 102. Tulsa: AAPG, 2013.
    [206]
    黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm

    LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm
    [207]
    邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201506001.htm

    ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201506001.htm
    [208]
    金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2825) PDF downloads(497) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return