Volume 42 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
ZAN Ling. Enrichment characteristics and main controlling factors of shale oil reservoir in the second member of Paleogene Funing Formation, Beigang Subsag, Jinhu Sag, Subei Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 618-624. doi: 10.11781/sysydz202004618
Citation: ZAN Ling. Enrichment characteristics and main controlling factors of shale oil reservoir in the second member of Paleogene Funing Formation, Beigang Subsag, Jinhu Sag, Subei Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 618-624. doi: 10.11781/sysydz202004618

Enrichment characteristics and main controlling factors of shale oil reservoir in the second member of Paleogene Funing Formation, Beigang Subsag, Jinhu Sag, Subei Basin

doi: 10.11781/sysydz202004618
  • Received Date: 2020-04-07
  • Rev Recd Date: 2020-07-13
  • Publish Date: 2020-07-28
  • The accumulation conditions were studied and the main controlling factors were determined based on the analysis of marly shale reservoirs in the second member of Paleogene Funing Formation in the Beigang Subsag, Jinhu Sag, Subei Basin. The Beigang marly shale reservoir is buried 3 660-3 735 m, in the ③-④ subsections of the second member of Funing Formation. It is a typical self-sourced oil reservoir. The reservoir is characterized by "four high values and one development", that is, high organic matter abundance, high thermal evolution degree, high brittle mineral content, high abnormal pressure and natural fracture development. The lime mudstones and marls of the ③-④ submembers of the second member of Funing Formation are high-quality source rocks. The average TOC content is 1.83%, and the average S1 value is 0.59 mg/g. The organic matter type is type Ⅰ, and the Ro value is 1.1%, indicating a high maturity. The crude oil has moderate phytane, gammacerane, pregnane and tricyclic terpane contents indicating deposition in a relatively high salinity environment. The average content of brittle minerals is 60.7%, mainly consisting of quartz, dolomite and calcite. The measured porosity is 4.24%-8.76%, with an average of 7.04%. Solution pores are developed in subsection ③, while natural fractures are developed in subsection ④. The pressure coefficient calculated by acoustic time difference is 1.3. Widespread high-quality source rocks are the material basis for shale reservoir formation. Geological "sweet spots" control the local enrichment of shale oil. High abnormal pressure is critical for the high production of shale reservoir. The marly shale reservoir in the second member of Funing Formation has a good prospect for exploration and development.

     

  • loading
  • [1]
    黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. doi: 10.13673/j.cnki.cn37-1359/te.2019.01.002

    LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. doi: 10.13673/j.cnki.cn37-1359/te.2019.01.002
    [2]
    谢文泉, 刘招君, 肖丽佳, 等. 柴北缘鱼卡地区中侏罗统石门沟组油页岩资源潜力[J]. 特种油气藏, 2018, 25(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201805015.htm

    XIE Wenquan, LIU Zhaojun, XIAO Lijia, et al. Oil shale resource potential of the Middle Jurassic Shimengou Formation in Yuka of the north rim in Qaidam Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201805015.htm
    [3]
    余涛, 卢双舫, 李俊乾, 等. 东营凹陷页岩油游离资源有利区预测[J]. 断块油气田, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm

    YU Tao, LU Shuangfang, LI Junqian, et al. Prediction for favorable area of shale oil free resources in Dongying Sag[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm
    [4]
    包友书. 渤海湾盆地东营凹陷古近系页岩油主要赋存空间探索[J]. 石油实验地质, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479

    BAO Youshu. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin[J]. Petroleum Geo-logy & Experiment, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479
    [5]
    雷浩, 何建华, 胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏, 2019, 26(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903017.htm

    LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903017.htm
    [6]
    杨智, 侯连华, 林森虎, 等. 吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力[J]. 中国石油勘探, 2008, 23(4): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804010.htm

    YANG Zhi, HOU Lianhua, LIN Senhu, et al. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar Sag[J]. China Petroleum Exploration, 2008, 23(4): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804010.htm
    [7]
    练铭祥, 薛冰, 杨盛良. 苏北新生代盆地断陷和坳陷的形成机理[J]. 石油实验地质, 2001, 23(3): 256-260. doi: 10.11781/sysydz200103256

    LIAN Mingxiang, XUE Bing, YANG Shengliang. Formation mechanism of depressions and rifts in the Cenozoic basin of north Jiangsu province[J]. Petroleum Geology & Experiment, 2001, 23(3): 256-260. doi: 10.11781/sysydz200103256
    [8]
    舒良树, 王博, 王良书, 等. 苏北盆地晚白垩世-新近纪原型盆地分析[J]. 高校地质学报, 2005, 11(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504009.htm

    SHU Liangshu, WANG Bo, WANG Liangshu, et al. Analysis of northern Jiangsu prototype basin from Late Cretaceous to Neogene[J]. Geological Journal of China Universities, 2005, 11(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504009.htm
    [9]
    刘喜欢, 杨芝文, 杨立干. 金湖凹陷构造特征及圈闭类型[J]. 复杂油气藏, 2018, 11(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201803002.htm

    LIU Xihuan, YANG Zhiwen, YANG Ligan. Structural characte-ristics and trap types of Jinhu Sag[J]. Complex Hydrocarbon Reservoirs, 2018, 11(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201803002.htm
    [10]
    能源, 漆家福, 张春峰, 等. 金湖凹陷断裂特征及其石油地质意义[J]. 大地构造与成矿学, 2012, 36(1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201201006.htm

    NENG Yuan, QI Jiafu, ZHANG Chunfeng, et al. Structural features of the Jinhu Sag in the Subei Basin and its petroleum geological significance[J]. Geotectonica et Metallogenia, 2012, 36(1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201201006.htm
    [11]
    毛光周, 刘晓通, 安鹏瑞, 等. 无机地球化学指标在古盐度恢复中的应用及展望[J]. 山东科技大学学报(自然科学版), 2008, 37(1): 92-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201801009.htm

    MAO Guangzhou, LIU Xiaotong, AN Pengrui, et al. Application and outlook of inorganic geochemical indexes in reconstruction of Palaeosalinity[J]. Journal of Shandong University of Science and Technology (Natural Science), 2008, 37(1): 92-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201801009.htm
    [12]
    高辉, 何梦卿, 赵鹏云, 等. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133

    GAO Hui, HE Mengqing, ZHAO Pengyun, et al. Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J]. Petroleum Geology & Experiment, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133
    [13]
    能源, 漆家福, 张春峰, 等. 金湖凹陷石港断层构造演化及油气聚集特征[J]. 石油学报, 2009, 30(5): 667-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200905007.htm

    NENG Yuan, QI Jiafu, ZHANG Chunfeng, et al. Structural evolution of Shigang Fault and features of hydrocarbon accumulation in Jinhu Sag[J]. Acta Petrolei Sinica, 2009, 30(5): 667-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200905007.htm
    [14]
    张枝焕, 杨藩, 李东明, 等. 中国新生界咸化湖相有机地球化学研究进展[J]. 地球科学进展, 2000, 15(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200001009.htm

    ZHANG Zhihuan, YANG Fan, LI Dongming, et al. The organic geochemistry research progress in Cenozoic salified lake in China[J]. Advance in Earth Sciences, 2000, 15(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200001009.htm
    [15]
    包友书. 济阳坳陷超压和应力场对页岩油富集的影响[J]. 断块油气田, 2018, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htm

    BAO Youshu. Influence of overpressure and stress on shale oil enrichment in Jiyang Depression[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htm
    [16]
    宋明水, 刘惠民, 王勇, 等. 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发, 2020, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm

    SONG Mingshui, LIU Huimin, WANG Yong, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression[J]. Petroleum Exploration and Development, 2020, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm
    [17]
    赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm

    ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (959) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return