Volume 43 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
HE Mufei, ZHANG Jingkun, MI Julei, CHEN Jun, HU Kai, CAO Jian. Organic geochemical study of FTIR analysis on source rock extracts: a case study of Lower Permian Fengcheng Formation in Junggar Basin, NW China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1048-1053. doi: 10.11781/sysydz2021061048
Citation: HE Mufei, ZHANG Jingkun, MI Julei, CHEN Jun, HU Kai, CAO Jian. Organic geochemical study of FTIR analysis on source rock extracts: a case study of Lower Permian Fengcheng Formation in Junggar Basin, NW China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1048-1053. doi: 10.11781/sysydz2021061048

Organic geochemical study of FTIR analysis on source rock extracts: a case study of Lower Permian Fengcheng Formation in Junggar Basin, NW China

doi: 10.11781/sysydz2021061048
  • Received Date: 2021-04-27
  • Rev Recd Date: 2021-08-26
  • Publish Date: 2021-11-28
  • To discover the values of Fourier Transform Infrared Spectroscopy (FTIR) in the research of organic geochemistry, hydrocarbon generation features of source rocks of Lower Permian Fengcheng, Junggar Basin were studied by the means of FTIR analysis on the extracts. Seven FTIR functional groups appeared to have indicative significance, based on which three new index were proposed, including A index (A2 920/A3 600), B index (A2 920/A1 460), and C index (A1 140/A1 600). Specifically, A index unraveled a higher hydrocarbon generation potential of the source rocks located in saline areas, B index indicated that the possible hydrothermal fluid injection have caused the abnormal thermal evolution of organic matter in saline source rocks, and C index showed that an increasing salinity from marginal zone to saline zones has affected to the organic molecular polymerization in the Fengcheng Formation source rocks. Based on that, the saline zone located at the center of Fengcheng Formation deposition has great potential for oil-gas exploration, particularly for light oils in the deep reservoirs. These understandings provided new references for the regional oil-gas exploration and pointed out that FTIR can supplement traditional organic geochemistry, displaying a broad application potential.

     

  • loading
  • [1]
    DE PEINDER P. Characterization and classification of crude oils using a combination of spectroscopy and chemometrics[D]. Utrecht, Netherlands: Univeristeit Utrecht, 2009.
    [2]
    HATAMI M, OSAWA Y, SUGIMURA H. Chemical structure and properties of heat treated coal in the early state of carbonization (Ⅷ): behaviours of oxygen containing functional groups[J]. Nenryo Kyokaishi, 1967, 46: 819-827.
    [3]
    PAINTER P C, SNYDER R W, STARSINIC M, et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs[J]. Applied Spectroscopy, 1981, 35(5): 475-485. doi: 10.1366/0003702814732256
    [4]
    JACOBSON J M, GRAY M R. Structural group analysis of changes in Peace River bitumen caused by thermal recovery[J]. Fuel, 1987, 66(6): 753-757. doi: 10.1016/0016-2361(87)90119-0
    [5]
    PIRONON R, BARRES O. Semi-quantitative FT-IR microana-lysis limits: evidence from synthetic hydrocarbon fluid inclusions in sylvite[J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 509-518. doi: 10.1016/0016-7037(90)90348-O
    [6]
    PERMANYER A, DOUIFI L, LAHCINI A, et al. FTIR and SUVF spectroscopy applied to reservoir compartmentalization: a comparative study with gas chromatography fingerprints results[J]. Fuel, 2002, 81(7): 861-866. doi: 10.1016/S0016-2361(01)00211-3
    [7]
    MELÉNDEZ L V, LACHE A, ORREGO-RUIZ J A, et al. Prediction of the SARA analysis of Colombian crude oils using ATR-FTIR spectroscopy and chemometric methods[J]. Journal of Petroleum Science and Engineering, 2012, 90-91: 56-60. doi: 10.1016/j.petrol.2012.04.016
    [8]
    ZHANG Jingkun, CAO Jian, XIANG Baoli, et al. Fourier-transform infrared proxies for oil source and maturity: insights from the Early Permian alkaline lacustrine system, Junggar Basin (NW China)[J]. Energy & Fuels, 2019, 33(11): 10704-10717.
    [9]
    曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36(7): 781-790. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201507002.htm

    CAO Jian, LEI Dewen, LI Yuwen, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201507002.htm
    [10]
    XIA Liuwen, CAO Jian, STÜEKEN E E, et al. Unsynchronized evolution of salinity and PH of a Permian alkaline lake influenced by hydrothermal fluids: a multi-proxy geochemical study[J]. Chemical Geology, 2020, 541: 119581. doi: 10.1016/j.chemgeo.2020.119581
    [11]
    POMERANTZ A E. Toward molecule-specific geochemistry of heavy ends: application to the upstream oil industry[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4403-4414.
    [12]
    PARIKH S J, CHOROVER J. FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1[J]. Geomicrobiology Journal, 2005, 22(5): 207-218. doi: 10.1080/01490450590947724
    [13]
    CHEN Yanyan, ZOU Caineng, MASTALERZ M, et al. Applications of micro-Fourier transform infrared spectroscopy (FTIR) in the geological sciences: a review[J]. International Journal of Molecular Sciences, 2015, 16(12): 30223-30250. doi: 10.3390/ijms161226227
    [14]
    JI Junfeng, GE Yun, BALSAM W, et al. Rapid identification of dolomite using a Fourier transform infrared spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP site U1308[J]. Marine Geology, 2009, 258(1/4): 60-68.
    [15]
    ABBAS O, REBUFA C, DUPUY N, et al. PLS regression on spectroscopic data for the prediction of crude oil quality: API gravity and aliphatic/aromatic ratio[J]. Fuel, 2012, 98: 5-14.
    [16]
    ABBAS O, DUPUY N, REBUFA C, et al. Prediction of source rock origin by chemometric analysis of Fourier transform infrared-attenuated total reflectance spectra of oil petroleum: evaluation of aliphatic and aromatic fractions by self-modeling mixture analysis[J]. Applied Spectroscopy, 2006, 60(3): 304-314.
    [17]
    翁诗甫, 许怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016.

    WENG Shifu, XU Yizhuang. Fourier transform infrared spectroscopy[M]. 3rd ed. Beijing: Chemistry Industry Press, 2016.
    [18]
    WEIGEL S, STEPHAN D. Bitumen characterization with Fourier Transform Infrared Spectroscopy and multivariate evaluation: prediction of various physical and chemical parameters[J]. Energy & Fuels, 2018, 32(10): 10437-10442.
    [19]
    ZHANG Jingkun, CAO Jian, HU Wenxuan, et al. Insights intoCarboniferous subduction-related petroleum systems in the CentralAsian Orogenic Belt (CAOB) from hydrocarbons in vein calcite cements, West Junggar, northwest China[J]. Marine and Petroleum Geology, 2020, 124: 104796.
    [20]
    PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide vol. 1: biomarkers and isotopes in the environment and human history[M]. 2nd ed. New York: Cambridge University Press, 2005: 1155.
    [21]
    KVALHEIM O M, CHRISTY A A, TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888.
    [22]
    RADKE M, WELTE D H. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons[M]//BJORØY M, ALBRECHT C, CORNFORD C, et al. Advances in organic geochemistry1981. New York: John Wiley & Sons, 1983: 504-512.
    [23]
    HUGHEY C A, RODGERS R P, MARSHALL A G, et al. Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2004, 35(7): 863-880.
    [24]
    KISTER J, GUILIANO M, LARGEAU C, et al. Characterization of chemical structure, degree of maturation and oil potential ofTorbanites (type Ⅰ kerogens) by quantitative FT-i. r. spectroscopy[J]. Fuel, 1990, 69(11): 1356-1361.
    [25]
    JIANG Zusheng, FOWLER M G. Carotenoid-derived alkanes in oils from northwestern China[J]. Organic Geochemistry, 1986, 10(4/6): 831-839.
    [26]
    POWELL T G, MCKIRDY D M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia[J]. Nature Physical Science, 1973, 243(124): 37-39.
    [27]
    DIDYK B M, SIMONEIT B R T, BRASSELL S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
    [28]
    WENGER L M, ISAKSEN G H. Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments[J]. Organic Geochemistry, 2002, 33(12): 1277-1292.
    [29]
    POETZ S, HORSFIELD B, WILKES H. Maturity-driven generation and transformation of acidic compounds in the organic-rich Posidonia shale as revealed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2014, 28(8): 4877-4888.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (536) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return