Volume 43 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
YU Lingjie, LIU Keyu, FAN Ming, LIU Youxiang. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
Citation: YU Lingjie, LIU Keyu, FAN Ming, LIU Youxiang. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089

Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin

doi: 10.11781/sysydz2021061089
  • Received Date: 2021-08-09
  • Rev Recd Date: 2021-10-12
  • Publish Date: 2021-11-28
  • In this paper, the co-occurring characteristics of pore gas and water in the Longmaxi Formation shales in the Sichuan Basin, South China were investigated. Water vapor and methane adsorption by the means of gravimetric methods were carried out to quantitatively determine the behavior of gas and bounding water in micro-nano pores. The impact of the shale compositions and pore structures on the occurring characteristics were discussed. Results showed that the storage capacity of bound water in different types of shales varied dramatically, and the characteristics of bound water could be described by the water vapor adsorption curve and the GAB model. There is an apaprent positive correlation between the maximum monolayer water molecule adsorption capacity and the clay mineral content in shales, indicating that clay minerals provide the main active adsorption sites for water molecules. The adsorption capacity of shale to water molecule is higher than that of methane molecule overall, and methane molecule mainly exist in pores with the form of monolayer adsorption. Bound water, adsorbed gas and free gas could be stored in different pore ranges of different shales. Pores with diameters lower than 2 nm are occupied by bounding water and adsorbed gas. For shales with TOC < 2.5%, free gas would be stored in pores with diameters larger than 5 nm approximately, while for the shales with TOC>2.5%, free gas would be stored in pores with diameters larger than 3 nm approximately. The higher the TOC content, the higher the proportion of the free-gas storage space.

     

  • loading
  • [1]
    SAKHAEE-POUR A, BRYANT S L. Pore structure of shale[J]. Fuel, 2015, 143: 467-475. doi: 10.1016/j.fuel.2014.11.053
    [2]
    AMANN-HILDENBRAND A, GHANIZADEH A, KROOSS B M. Transport properties of unconventional gas systems[J]. Marine and Petroleum Geology, 2012, 31(1): 90-99. doi: 10.1016/j.marpetgeo.2011.11.009
    [3]
    GENSTERBLUM Y, GHANIZADEH A, CUSS R J, et al. Gas transport and storage capacity in shale gas reservoirs-a reviews Part A: Transport processes[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 87-122. doi: 10.1016/j.juogr.2015.08.001
    [4]
    王飞宇, 贺志勇, 孟晓辉, 等. 页岩气赋存形式和初始原地气量(OGIP)预测技术[J]. 天然气地球科学, 2011, 22(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm

    WANG Feiyu, HE Zhiyong, MENG Xiaohui, et al. Occurrence of shale gas and prediction of original gas in-place (OGIP)[J]. Natural Gas Geosciences, 2011, 22(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm
    [5]
    HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. doi: 10.1306/02141312091
    [6]
    方朝合, 黄志龙, 王巧智, 等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm

    FANG Chaohe, HUANG Zhilong, WANG Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm
    [7]
    刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm

    LIU Honglin, WANG Hongyan. Ultra-low water saturation characte-ristics and the identification of over-pressured play fairways of marine shales in South China[J]. Natural Gas Industry, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm
    [8]
    HATCH C D, WIESE J S, CRANE C C, et al. Water adsorption on clay minerals as a function of relative humidity: application of BET and freundlich adsorption models[J]. Langmuir, 2012, 28(3): 1790-1803. doi: 10.1021/la2042873
    [9]
    LAHN L, BERTIER P, SEEMANN T, et al. Distribution of sorbed water in the pore network of mudstones assessed from physisorption measurements[J]. Microporous and Mesoporous Materials, 2020, 295: 109902. doi: 10.1016/j.micromeso.2019.109902
    [10]
    SHEN W J, LI X Z, LU X B, et al. Experimental study and isotherm models of water vapor adsorption in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 484-491. doi: 10.1016/j.jngse.2018.02.002
    [11]
    SANG G J, LIU S M, ZHANG R, et al. Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: impact on water adsorption/retention behavior[J]. International Journal of Coal Geology, 2018, 200: 173-185. doi: 10.1016/j.coal.2018.11.009
    [12]
    SANG G J, LIU S M, ELSWORTH D. Water vapor sorption pro-perties of Illinois shales under dynamic water vapor conditions: experimentation and modeling[J]. Water Resources Research, 2019, 55(8): 7212-7228. doi: 10.1029/2019WR024992
    [13]
    BAHADUR J, MELNICHENKO Y B, MASTALERZ M, et al. Hierarchical pore morphology of cretaceous shale: a small-angle neutron scattering and ultrasmall-angle neutron scattering study[J]. Energy & Fuels, 2014, 28(10): 6336-6344.
    [14]
    KING H E Jr, EBERLE A, WALTERS C C, et al. Pore architecture and connectivity in gas shale[J]. Energy & Fuels, 2015, 29(3): 1375-1390.
    [15]
    CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119
    [16]
    RUPPERT L F, SAKUROVS R, BLACH T P, et al. A USANS/SANS study of the accessibility of pores in the barnett shale to methane and water[J]. Energy & Fuel, 2013, 27(2): 772-779.
    [17]
    李靖, 李相方, 陈掌星, 等. 页岩储层束缚水影响下的气相渗透率模型[J]. 石油科学通报, 2018, 3(2): 167-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802005.htm

    LI Jing, LI Xiangfang, CHEN Zhangxin, et al. Permeability model for gas transport through shale nanopores with irreducible water saturation[J]. Petroleum Science Bulletin, 2018, 3(2): 167-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802005.htm
    [18]
    SUN Z, LI X F, SHI J T, et al. Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1008-1019. doi: 10.1016/j.ijheatmasstransfer.2017.07.123
    [19]
    ZHANG T W, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131. doi: 10.1016/j.orggeochem.2012.03.012
    [20]
    GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123: 34-51. doi: 10.1016/j.coal.2013.06.010
    [21]
    MERKEL A, FINK R, LITTKE R. The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales[J]. International Journal of Coal Geology, 2015, 147/148: 1-8. doi: 10.1016/j.coal.2015.06.003
    [22]
    BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380. doi: 10.1021/ja01145a126
    [23]
    MUSA M A A, YIN C Y, SAVORY R M. Analysis of the textural characterstics and pore size distribution of a commercial zeolite using various adsorption models[J]. Journal of Applied Sciences, 2011, 11(21): 3650-3654. doi: 10.3923/jas.2011.3650.3654
    [24]
    BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multi molecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. doi: 10.1021/ja01269a023
    [25]
    俞凌杰, 范明, 陈红宇, 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm

    YU Lingjie, FAN Ming, CHEN Hongyu, et al. Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimetric method[J]. Acta Petrolei Sinica, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm
    [26]
    TANG X, RIPEPI N, VALENTINE K A, et al. Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis[J]. Fuel, 2017, 209: 606-614. doi: 10.1016/j.fuel.2017.07.062
    [27]
    SEEMANN T, BERTIER P, KROOSS B M, et al. Water vapour sorption on mudrocks[J]. Geological Society, London, Special Publications, 2017, 454(1): 201-233. doi: 10.1144/SP454.8
    [28]
    ZOLFAGHARI A, DEHGHANPOUR H, XU M X. Water sorption behaviour of gas shales: II. Pore size distribution[J]. International Journal of Coal Geology, 2017, 179: 187-195. doi: 10.1016/j.coal.2017.05.009
    [29]
    DEHGHANPOUR H, ZUBAIR H A, CHHABRA A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012, 26(9): 5750-5758.
    [30]
    STRIOLO A, GUBBINS K E, GRUSZKIEWICZ M S, et al. Effect of temperature on the adsorption of water in porous carbons[J]. Langmuir, 2005, 21(21): 9457-9467. doi: 10.1021/la051120t
    [31]
    MOSHER K, HE H J, LIU Y Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109/110: 36-44. doi: 10.1016/j.coal.2013.01.001
    [32]
    CHEN G H, LU S F, LIU K Y, et al. Critical factors controlling shale gas adsorption mechanisms on different minerals investigated using GCMC simulations[J]. Marine and Petroleum Geology, 2019, 100: 31-42. doi: 10.1016/j.marpetgeo.2018.10.023
    [33]
    俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438

    YU Lingjie, FAN Ming, TENGER, et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438
    [34]
    REXER T F, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels, 2013, 27(6): 3099-3109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (450) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return