Citation: | YU Lingjie, LIU Keyu, FAN Ming, LIU Youxiang. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089 |
[1] |
SAKHAEE-POUR A, BRYANT S L. Pore structure of shale[J]. Fuel, 2015, 143: 467-475. doi: 10.1016/j.fuel.2014.11.053
|
[2] |
AMANN-HILDENBRAND A, GHANIZADEH A, KROOSS B M. Transport properties of unconventional gas systems[J]. Marine and Petroleum Geology, 2012, 31(1): 90-99. doi: 10.1016/j.marpetgeo.2011.11.009
|
[3] |
GENSTERBLUM Y, GHANIZADEH A, CUSS R J, et al. Gas transport and storage capacity in shale gas reservoirs-a reviews Part A: Transport processes[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 87-122. doi: 10.1016/j.juogr.2015.08.001
|
[4] |
王飞宇, 贺志勇, 孟晓辉, 等. 页岩气赋存形式和初始原地气量(OGIP)预测技术[J]. 天然气地球科学, 2011, 22(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm
WANG Feiyu, HE Zhiyong, MENG Xiaohui, et al. Occurrence of shale gas and prediction of original gas in-place (OGIP)[J]. Natural Gas Geosciences, 2011, 22(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm
|
[5] |
HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. doi: 10.1306/02141312091
|
[6] |
方朝合, 黄志龙, 王巧智, 等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm
FANG Chaohe, HUANG Zhilong, WANG Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014, 25(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403021.htm
|
[7] |
刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm
LIU Honglin, WANG Hongyan. Ultra-low water saturation characte-ristics and the identification of over-pressured play fairways of marine shales in South China[J]. Natural Gas Industry, 2013, 33(7): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201307032.htm
|
[8] |
HATCH C D, WIESE J S, CRANE C C, et al. Water adsorption on clay minerals as a function of relative humidity: application of BET and freundlich adsorption models[J]. Langmuir, 2012, 28(3): 1790-1803. doi: 10.1021/la2042873
|
[9] |
LAHN L, BERTIER P, SEEMANN T, et al. Distribution of sorbed water in the pore network of mudstones assessed from physisorption measurements[J]. Microporous and Mesoporous Materials, 2020, 295: 109902. doi: 10.1016/j.micromeso.2019.109902
|
[10] |
SHEN W J, LI X Z, LU X B, et al. Experimental study and isotherm models of water vapor adsorption in shale rocks[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 484-491. doi: 10.1016/j.jngse.2018.02.002
|
[11] |
SANG G J, LIU S M, ZHANG R, et al. Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: impact on water adsorption/retention behavior[J]. International Journal of Coal Geology, 2018, 200: 173-185. doi: 10.1016/j.coal.2018.11.009
|
[12] |
SANG G J, LIU S M, ELSWORTH D. Water vapor sorption pro-perties of Illinois shales under dynamic water vapor conditions: experimentation and modeling[J]. Water Resources Research, 2019, 55(8): 7212-7228. doi: 10.1029/2019WR024992
|
[13] |
BAHADUR J, MELNICHENKO Y B, MASTALERZ M, et al. Hierarchical pore morphology of cretaceous shale: a small-angle neutron scattering and ultrasmall-angle neutron scattering study[J]. Energy & Fuels, 2014, 28(10): 6336-6344.
|
[14] |
KING H E Jr, EBERLE A, WALTERS C C, et al. Pore architecture and connectivity in gas shale[J]. Energy & Fuels, 2015, 29(3): 1375-1390.
|
[15] |
CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119
|
[16] |
RUPPERT L F, SAKUROVS R, BLACH T P, et al. A USANS/SANS study of the accessibility of pores in the barnett shale to methane and water[J]. Energy & Fuel, 2013, 27(2): 772-779.
|
[17] |
李靖, 李相方, 陈掌星, 等. 页岩储层束缚水影响下的气相渗透率模型[J]. 石油科学通报, 2018, 3(2): 167-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802005.htm
LI Jing, LI Xiangfang, CHEN Zhangxin, et al. Permeability model for gas transport through shale nanopores with irreducible water saturation[J]. Petroleum Science Bulletin, 2018, 3(2): 167-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802005.htm
|
[18] |
SUN Z, LI X F, SHI J T, et al. Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1008-1019. doi: 10.1016/j.ijheatmasstransfer.2017.07.123
|
[19] |
ZHANG T W, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131. doi: 10.1016/j.orggeochem.2012.03.012
|
[20] |
GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123: 34-51. doi: 10.1016/j.coal.2013.06.010
|
[21] |
MERKEL A, FINK R, LITTKE R. The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales[J]. International Journal of Coal Geology, 2015, 147/148: 1-8. doi: 10.1016/j.coal.2015.06.003
|
[22] |
BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380. doi: 10.1021/ja01145a126
|
[23] |
MUSA M A A, YIN C Y, SAVORY R M. Analysis of the textural characterstics and pore size distribution of a commercial zeolite using various adsorption models[J]. Journal of Applied Sciences, 2011, 11(21): 3650-3654. doi: 10.3923/jas.2011.3650.3654
|
[24] |
BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multi molecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. doi: 10.1021/ja01269a023
|
[25] |
俞凌杰, 范明, 陈红宇, 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm
YU Lingjie, FAN Ming, CHEN Hongyu, et al. Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimetric method[J]. Acta Petrolei Sinica, 2015, 36(5): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505004.htm
|
[26] |
TANG X, RIPEPI N, VALENTINE K A, et al. Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis[J]. Fuel, 2017, 209: 606-614. doi: 10.1016/j.fuel.2017.07.062
|
[27] |
SEEMANN T, BERTIER P, KROOSS B M, et al. Water vapour sorption on mudrocks[J]. Geological Society, London, Special Publications, 2017, 454(1): 201-233. doi: 10.1144/SP454.8
|
[28] |
ZOLFAGHARI A, DEHGHANPOUR H, XU M X. Water sorption behaviour of gas shales: II. Pore size distribution[J]. International Journal of Coal Geology, 2017, 179: 187-195. doi: 10.1016/j.coal.2017.05.009
|
[29] |
DEHGHANPOUR H, ZUBAIR H A, CHHABRA A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012, 26(9): 5750-5758.
|
[30] |
STRIOLO A, GUBBINS K E, GRUSZKIEWICZ M S, et al. Effect of temperature on the adsorption of water in porous carbons[J]. Langmuir, 2005, 21(21): 9457-9467. doi: 10.1021/la051120t
|
[31] |
MOSHER K, HE H J, LIU Y Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109/110: 36-44. doi: 10.1016/j.coal.2013.01.001
|
[32] |
CHEN G H, LU S F, LIU K Y, et al. Critical factors controlling shale gas adsorption mechanisms on different minerals investigated using GCMC simulations[J]. Marine and Petroleum Geology, 2019, 100: 31-42. doi: 10.1016/j.marpetgeo.2018.10.023
|
[33] |
俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438
YU Lingjie, FAN Ming, TENGER, et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016, 38(4): 438-444. doi: 10.11781/sysydz201604438
|
[34] |
REXER T F, BENHAM M J, APLIN A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels, 2013, 27(6): 3099-3109.
|