Citation: | SUN Ke, XU Ke, CHEN Qinghua. Characterization of the length of structural fractures in low permeability reservoirs and its application: a case study of Longwangmiao Formation in Moxi-Gaoshiti areas, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(1): 160-169. doi: 10.11781/sysydz202201160 |
[1] |
赵思远, 贾自力, 吴长辉, 等. 低渗透油藏注水诱发裂缝实验研究: 以鄂尔多斯盆地吴起吴仓堡长9油藏为例[J]. 非常规油气, 2021, 8(3): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202103011.htm
ZHAO Siyuan, JIA Zili, WU Changhui, et al. Experimental study on waterflood induced fractures simulation in low permeability reservoir: a case study from Chang 9 reservoir in Wuqi Wucangbao, Ordos Basin[J]. Unconventional Oil & Gas, 2021, 8(3): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202103011.htm
|
[2] |
OLSON J E, LAUBACH S E, LANDER R H. Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535-1549. doi: 10.1306/08110909100
|
[3] |
吕文雅, 曾联波, 张俊辉, 等. 川中地区中下侏罗统致密油储层裂缝发育特征[J]. 地球科学与环境学报, 2016, 38(2): 226-234. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201602008.htm
LV Wenya, ZENG Lianbo, ZHANG Junhui, et al. Development characteristics of fractures in the Middle-Lower Jurassic tight oil reservoirs in central Sichuan Basin[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 226-234. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201602008.htm
|
[4] |
霍健, 王星皓, 罗超, 等. 川南地区龙马溪组页岩储层裂缝特征[J]. 工程地质学报, 2021, 29(1): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101018.htm
HUO Jian, WANG Xinghao, LUO Chao, et al. Fracture characte-ristics of Longmaxi shale in southern Sichuan[J]. Journal of Engineering Geology, 2021, 29(1): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101018.htm
|
[5] |
黎静容, 朱桦, 冯晓明, 等. 川东北陆相储层裂缝特征差异性及对产能的影响[J]. 石油实验地质, 2016, 38(6): 742-747. doi: 10.11781/sysydz201606742
LI Jingrong, ZHU Hua, FENG Xiaoming, et al. Differences of fracture characteristics and the influence on productivity in the northeastern Sichuan continental basin[J]. Petroleum Geology & Experiment, 2016, 38(6): 742-747. doi: 10.11781/sysydz201606742
|
[6] |
梅丹, 胡勇, 王倩. 裂缝对气藏储层渗透率及气井产能的贡献[J]. 石油实验地质, 2019, 41(5): 769-772. doi: 10.11781/sysydz201905769
MEI Dan, HU Yong, WANG Qian. Experimental study on fracture contribution to gas reservoir permeability and well capacity[J]. Petroleum Geology & Experiment, 2019, 41(5): 769-772. doi: 10.11781/sysydz201905769
|
[7] |
彭红利. 碳酸盐岩油气藏构造裂缝分布预测及定量参数场形成初步研究[D]. 南充: 西南石油大学, 2005.
PENG Hongli. The preliminary research on carbonate gas reservoir structural fracture prediction and the quantitative parameter field formation[D]. Nanchong: Southwest Petroleum University, 2005.
|
[8] |
蒋有录, 李明阳, 王良军, 等. 川东北巴中—通南巴地区须家河组致密砂岩储层裂缝发育特征及控制因素[J]. 地质学报, 2020, 94(5): 1525-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202005012.htm
JIANG Youlu, LI Mingyang, WANG Liangjun, et al. Characteristics and controlling factors of tight sandstone reservoir fractures of the Xujiahe Formation in the Bazhong-Tongnanba area, northeast Sichuan[J]. Acta Geologica Sinica, 2020, 94(5): 1525-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202005012.htm
|
[9] |
董少群, 吕文雅, 夏东领, 等. 致密砂岩储层多尺度裂缝三维地质建模方法[J]. 石油与天然气地质, 2020, 41(3): 627-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003019.htm
DONG Shaoqun, LU Wenya, XIA Dongling, et al. An approach to 3D geological modeling of multi-scaled fractures in tight sandstone reservoirs[J]. Oil & Gas Geology, 2020, 41(3): 627-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003019.htm
|
[10] |
鞠玮, 尤源, 冯胜斌, 等. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质, 2020, 41(3): 596-605.
JU Wei, YOU Yuan, FENG Shengbin, et al. Characteristics and genesis of bedding-parallel fractures in tight sandstone reservoirs of Chang 7 oil layer, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(3): 596-605.
|
[11] |
季宗镇, 戴俊生, 汪必峰, 等. 构造裂缝多参数定量计算模型[J]. 中国石油大学学报(自然科学版), 2010, 34(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001007.htm
JI Zongzhen, DAI Junsheng, WANG Bifeng, et al. Multi-parameter quantitative calculation model for tectonic fracture[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001007.htm
|
[12] |
戴俊生, 冯建伟, 李明, 等. 砂泥岩间互地层裂缝延伸规律探讨[J]. 地学前缘, 2011, 18(2): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102031.htm
DAI Junsheng, FENG Jianwei, LI Ming, et al. Discussion on the extension law of structural fracture in sand-mud interbed formation[J]. Earth Science Frontiers, 2011, 18(2): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102031.htm
|
[13] |
冯建伟, 戴俊生, 马占荣, 等. 低渗透砂岩裂缝参数与应力场关系理论模型[J]. 石油学报, 2011, 32(4): 664-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104017.htm
FENG Jianwei, DAI Junsheng, MA Zhanrong, et al. The theore-tical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4): 664-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104017.htm
|
[14] |
丁中一, 钱祥麟, 霍红, 等. 构造裂缝定量预测的一种新方法: 二元法[J]. 石油与天然气地质, 1998, 19(1): 1-7.
DING Zhongyi, QIAN Xianglin, HUO Hong, et al. A new method for quantitative prediction of tectonic fractures: two-factor method[J]. Oil & Gas Geology, 1998, 19(1): 1-7.
|
[15] |
李辉, 林承焰, 任丽华, 等. 基于岩相—断层破碎带耦合约束的构造裂缝预测研究: 以博兴洼陷大芦湖油田沙三中亚段为例[J]. 中国矿业大学学报, 2020, 49(2): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002012.htm
LI Hui, LIN Chengyan, REN Lihua, et al. Tectonic fracture prediction based on the coupling constraint of lithofacies and fault damage zone: a case study of the 2nd sand group of middle Es3 member in Daluhu Oilfield, Boxing Subsag[J]. Journal of China University of Mining & Technology, 2020, 49(2): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002012.htm
|
[16] |
李蒙, 商晓飞, 赵华伟, 等. 基于likelihood地震属性的致密气藏断裂预测: 以四川盆地川西坳陷新场地区须二段为例[J]. 石油与天然气地质, 2020, 41(6): 1299-1309.
LI Meng, SHANG Xiaofei, ZHAO Huawei, et al. Prediction of fractures in tight gas reservoirs based on likelihood attribute: a case study of the 2nd member of Xujiahe Formation in Xinchang area, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(6): 1299-1309.
|
[17] |
任启强, 金强, 冯振东, 等. 和田河气田奥陶系碳酸盐岩储层关键期构造裂缝预测[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202006002.htm
REN Qiqiang, JIN Qiang, FENG Zhendong, et al. Prediction of key period fractures of Ordovician carbonate reservoir in Hetianhe Gas Field[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202006002.htm
|
[18] |
穆龙新, 赵国良, 田中元, 等. 储层裂缝预测研究[M]. 北京: 石油工业出版社, 2009.
MU Longxin, ZHAO Guoliang, TIAN Zhongyuan. The research of natural fracture for low permeability reservoirs[M]. Beijing: Petroleum Industry Press, 2009.
|
[19] |
刘子雄, 常菁铉, 李新发, 等. 基于裂缝监测的致密储层压裂裂缝走向预测[J]. 天然气地球科学, 2020, 31(6): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006011.htm
LIU Zixiong, CHANG Jingxuan, LI Xinfa, et al. Fracturing direction prediction based on fracturing monitoring of tight gas reservoir[J]. Natural Gas Geoscience, 2020, 31(6): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006011.htm
|
[20] |
张林, 赵喜民, 刘池洋, 等. 沉积作用对水力压裂裂缝缝长的限制作用[J]. 石油勘探与开发, 2008, 35(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200802012.htm
ZHANG Lin, ZHAO Ximin, LIU Chiyang, et al. Deposition confines hydraulic fracture length[J]. Petroleum Exploration and Development, 2008, 35(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200802012.htm
|
[21] |
尹丛彬, 李彦超, 王素兵, 等. 页岩压裂裂缝网络预测方法及其应用[J]. 天然气工业, 2017, 37(4): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704011.htm
YIN Congbin, LI Yanchao, WANG Subing, et al. Methodology of hydraulic fracture network prediction in shale reservoirs and its application[J]. Natural Gas Industry, 2017, 37(4): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704011.htm
|
[22] |
王翔. 川中高石梯—磨溪地区震旦系灯影组储层评价[D]. 成都: 西南石油大学, 2017.
WANG Xiang. Reservoir evaluation of Sinian Dengying Formation in the Gaoshiti-Moxi area, middle Sichuan Basin, China[D]. Chengdu: Southwest Petroleum University, 2017.
|
[23] |
刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htm
LIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htm
|
[24] |
钟勇, 李亚林, 张晓斌, 等. 川中古隆起构造演化特征及其与早寒武世绵阳—长宁拉张槽的关系[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 703-712.
ZHONG Yong, LI Yalin, ZHANG Xiaobin, et al. Evolution characteristics of central Sichuan palaeouplift and its relationship with Early Cambrian Mianyang-Changning intracratonic sag[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 703-712.
|
[25] |
李宗银, 姜华, 汪泽成, 等. 构造运动对四川盆地震旦系油气成藏的控制作用[J]. 天然气工业, 2014, 34(3): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403006.htm
LI Zongyin, JIANG Hua, WANG Zecheng, et al. Control of tectonic movement on hydrocarbon accumulation in the Sinian strata, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403006.htm
|
[26] |
魏国齐, 杨威, 杜金虎, 等. 四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用[J]. 石油勘探与开发, 2015, 42(3): 257-265.
WEI Guoqi, YANG Wei, DU Jinhu, et al. Tectonic features of Gaoshiti-Moxi paleo-uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(3): 257-265.
|
[27] |
田兴旺, 杨岱林, 钟佳倚, 等. 基于CT成像技术的白云岩储层微观表征: 以川中磨溪—龙女寺台内地区震旦系灯影组四段为例[J]. 沉积学报, 2021, 39(5): 1264-1274.
TIAN Xingwang, YANG Dailin, ZHONG Jiayi, et al. Microscopic characterization of dolomite reservoirs by CT imaging: a case study of the Dengsi Formation in Moxi-Longnvsi area, central Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1264-1274.
|
[28] |
张志镇. 岩石变形破坏过程中的能量演化机制[D]. 徐州: 中国矿业大学, 2013.
ZHANG Zhizhen. Energy evolution mechanism during rock deformation and failure[D]. Xuzhou: China University of Mining and Technology, 2013.
|
[29] |
谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740.
XIE Heping, JU Yang, LI Liyun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729-1740.
|
[30] |
陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 北京: 中国科技大学出版社, 2009.
CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Beijing: University of Science and Technology of China, 2009.
|
[31] |
赵建生. 断裂力学及断裂物理[M]. 武汉: 华中科技大学出版社, 2003.
ZHAO Jiansheng. Fracture mechanics and fracture physics[M]. Wuhan: Huazhong University of Science and Technology Press, 2003.
|
[32] |
孟庆彬, 王从凯, 黄炳香, 等. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报, 2020, 39(10): 2047-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010009.htm
MENG Qingbin, WANG Congkai, HUANG Bingxiang, et al. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2047-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010009.htm
|
[33] |
陈勉, 金衍, 张广清. 石油工程岩石力学基础[M]. 北京: 石油工业出版社, 2011.
CHEN Mian, JIN Yan, ZHANG Guangqing. Fundamentals of rock mechanics in petroleum engineering[M]. Beijing: Petroleum Industry Press, 2011.
|
[34] |
宋惠珍. 裂缝性储集层研究理论与方法[M]. 北京: 石油工业出版社, 2001.
SONG Huizhen. Theory and method of fractured reservoir research[M]. Beijing: Petroleum Industry Press, 2001.
|