Volume 44 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
TANG Xianglu, JIANG Zhenxue, SHAO Zeyu, HOU Zesheng, HE Shijie, LIU Xiaoxue, WANG Yuchao. Pore structure and physical properties of Quaternary weak diagenetic shales[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 210-218. doi: 10.11781/sysydz202202210
Citation: TANG Xianglu, JIANG Zhenxue, SHAO Zeyu, HOU Zesheng, HE Shijie, LIU Xiaoxue, WANG Yuchao. Pore structure and physical properties of Quaternary weak diagenetic shales[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 210-218. doi: 10.11781/sysydz202202210

Pore structure and physical properties of Quaternary weak diagenetic shales

doi: 10.11781/sysydz202202210
  • Received Date: 2021-10-25
  • Rev Recd Date: 2022-02-01
  • Publish Date: 2022-03-28
  • The biogas of Quaternary weak diagenetic shale has a wide exploration prospect, and the understanding of pore structure and physical properties of these shales is conducive to promote the geological theory of shale biogas reservoir. The Quaternary weak diagenetic shale from the Sanhu area of Qaidam Basin was employed as an example in this study, to study the pore structure and physical properties by the means of scanning electron microscopy, thin section observation, X-ray diffraction of whole-rock samples, overpressure pore permeability determination, relative permeability of gas-water etc. Results show that there are three types of lithofacies for the Quaternary weak diagenetic shales including clay shales, mixed shales and felsic shales, and pores appeared to include intergranular pores, inner pores of brittle mineral grains, inner pores of clay mineral grains and organic pores. The pore size of felsic shale is large, mainly micron pores. The pore size of clay shale and mixed shale are dominated by nano-scale pores. The peak porosity and permeability of Quaternary weak diagenetic shale distribute in the range of 15%-30% and (0.1-10) ×10-3 μm2, respectively, and significantly reduce under overburden conditions. The residual water saturation after displacement is high (with an average value of 58.7%). Due to clay expansion, the effective pore space is reduced and the fluidity of gas and water is restrained, resulting in very low relative permeability of gas and water in the two-phase co-flow zone.

     

  • loading
  • [1]
    刘池洋, 付锁堂, 张道伟, 等. 柴达木盆地巨型油气富集区的确定及勘探成效: 改造型盆地原盆控源、改造控藏之范例[J]. 石油学报, 2020, 41(12): 1527-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012007.htm

    LIU Chiyang, FU Suotang, ZHANG Daowei, et al. Determination of giant hydrocarbon enrichment area in Qaidam Basin and its exploration results: an example for source-controlling of original basin and reform-controlling reservoir in a reformed basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1527-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012007.htm
    [2]
    林培贤, 张霞, 林春明, 等. 柴达木盆地三湖坳陷诺北地区第四纪生物气形成及影响因素[J]. 高校地质学报, 2018, 24(6): 810-821. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806003.htm

    LIN Peixian, ZHANG Xia, LIN Chunming, et al. Formation mechanism and factors on the accumulations of the Quaternary biogenic gas in the Nuobei area in the Sanhu Depression, Qaidam Basin[J]. Geological Journal of China Universities, 2018, 24(6): 810-821. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806003.htm
    [3]
    CHEN Zhouheng, SHUAI Yanhua, OSADETZ K, et al. Comparison of biogenic gas fields in the Western Canada Sedimentary Basin and Qaidam Basin: implications for essential geological controls on large microbial gas accumulations[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(1): 33-52. doi: 10.2113/gscpgbull.63.1.33
    [4]
    周飞, 段生盛, 张永庶, 等. 柴达木盆地东部地区生物气形成机制[J]. 断块油气田, 2013, 20(4): 422-425. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201304006.htm

    ZHOU Fei, DUAN Shengsheng, ZHANG Yongshu, et al. Formation mechanism of biogas in eastern Qaidam Basin[J]. Fault-Block Oil & Gas Field, 2013, 20(4): 422-425. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201304006.htm
    [5]
    魏学斌, 沙威, 沈晓双, 等. 柴达木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 302-311. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103007.htm

    WEI Xuebin, SHA Wei, SHEN Xiaoshuang, et al. Petroleum exploration history and enlightenment in Qaidam Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 302-311. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103007.htm
    [6]
    华锐湘, 贾英兰, 李清, 等. 涩北气田气水分布及气水运动规律分析[J]. 天然气工业, 2009, 29(7): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200907026.htm

    HUA Ruixiang, JIA Yinglan, LI Qing, et al. An analysis of gas-water distribution and its movement law in the Sebei gas field[J]. Natural Gas Industry, 2009, 29(7): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200907026.htm
    [7]
    曹倩, 金强, 程付启. 柴达木盆地东部第四系生物气藏盖层封盖能力探讨[J]. 新疆石油地质, 2012, 33(5): 623-626. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201205034.htm

    CAO Qian, JIN Qiang, CHENG Fuqi. Approach to sealing ability of biological gas cap rock of Quaternary in eastern Qaidam Basin[J]. Xinjiang Petroleum Geology, 2012, 33(5): 623-626. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201205034.htm
    [8]
    林潼, 王孝明, 张璐, 等. 盖层厚度对天然气封闭能力的实验分析[J]. 天然气地球科学, 2019, 30(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201903003.htm

    LIN Tong, WANG Xiaoming, ZHANG Lu, et al. Experimental analysis of the effect of caprock thickness on sealed natural gas[J]. Natural Gas Geoscience, 2019, 30(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201903003.htm
    [9]
    王金鹏, 彭仕宓, 管志强, 等. 柴达木盆地第四系生物气藏泥岩盖层封闭机理[J]. 西南石油大学学报, 2007, 29(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200706018.htm

    WANG Jinpeng, PENG Shimi, GUAN Zhiqiang, et al. Mudstone caprock's sealing mechanism of biogenetic gas reservoir of Quaternary in Qaidam Basin[J]. Journal of Southwest Petroleum University, 2007, 29(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200706018.htm
    [10]
    刘广峰, 李雪娇, 顾岱鸿, 等. 卡尺丈量法和波义尔定律双室法孔隙度测量不确定度评定[J]. 计量技术, 2017, 61(8): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJS201708004.htm

    LIU Guangfeng, LI Xuejiao, GU Daihong, et al. Evaluation of uncertainty of porosity measurement by caliper measurement method and Boyle's Law two-compartment method[J]. Measurement Technique, 2017, 61(8): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJS201708004.htm
    [11]
    李奇, 高树生, 刘华勋, 等. 岩心渗透率的计算方法与适用范围[J]. 天然气工业, 2015, 35(3): 68-73. doi: 10.3787/j.issn.1000-0976.2015.03.010

    LI Qi, GAO Shusheng, LIU Huaxun, et al. Core permeability calculation methods and application scopes[J]. Natural Gas Industry, 2015, 35(3): 68-73. doi: 10.3787/j.issn.1000-0976.2015.03.010
    [12]
    伍岳, 樊太亮, 蒋恕, 等. 四川盆地南缘上奥陶统五峰组—下志留统龙马溪组页岩矿物组成与脆性特征[J]. 油气地质与采收率, 2015, 22(4): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201504011.htm

    WU Yue, FAN Tailiang, JIANG Shu, et al. Mineralogy and brittleness features of the shale in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in southern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(4): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201504011.htm
    [13]
    杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺—永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm

    YANG Xiya, LIU Chenglin, LIU Wenping, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm
    [14]
    郭旭升, 胡东风, 段金宝. 中国南方海相油气勘探展望[J]. 石油实验地质, 2020, 42(5): 675-686. doi: 10.11781/sysydz202005675

    GUO Xusheng, HU Dongfeng, DUAN Jinbao. Marine petroleum exploration in South China[J]. Petroleum Geology & Experiment, 2020, 42(5): 675-686. doi: 10.11781/sysydz202005675
    [15]
    方栋梁, 孟志勇. 页岩气富集高产主控因素分析: 以四川盆地涪陵地区五峰组—龙马溪组一段页岩为例[J]. 石油实验地质, 2020, 42(1): 37-41. doi: 10.11781/sysydz202001037

    FANG Dongliang, MENG Zhiyong. Main controlling factors of shale gas enrichment and high yield: a case study of Wufeng-Longmaxi formations in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 37-41. doi: 10.11781/sysydz202001037
    [16]
    曾秋楠, 于炳松, 李昱霏. 鄂尔多斯盆地东南部延长组页岩储层特征及控制因素[J]. 特种油气藏, 2013, 20(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201301007.htm

    ZENG Qiunan, YU Bingsong, LI Yufei. Reservoir characteristics and control factors in the shale bed of Yanchang Formation of southeast in Ordos Basin[J]. Special Oil and Gas Reservoirs, 2013, 20(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201301007.htm
    [17]
    张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105008.htm

    ZHANG Yaxiong. Source rock characterization: the dark mudstone in Chang 7 member of Triassic, central Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1089-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105008.htm
    [18]
    谷志宇, 刘恩涛, 王香增, 等. 鄂尔多斯盆地东南部延长组七段页岩发育特征及勘探潜力[J]. 油气地质与采收率, 2021, 28(1): 95-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101013.htm

    GU Zhiyu, LIU Entao, Wang Xiangzeng, et al. Development characte-ristics and exploration potential of shale in Chang7 member in southeast of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 95-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202101013.htm
    [19]
    范柏江, 梅启亮, 王小军, 等. 泥岩与页岩地化特征对比: 以鄂尔多斯盆地安塞地区延长组7段为例[J]. 石油与天然气地质, 2020, 41(6): 1119-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006002.htm

    FAN Bojiang, MEI Qiliang, WANG Xiaojun, et al. Geochemical comparison of mudstone and shale: a case study of the 7th member of Yanchang Formation in Ansai area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(6): 1119-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006002.htm
    [20]
    付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698
    [21]
    王剑, 周路, 靳军, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层孔隙结构、烃类赋存及其与可动性关系[J]. 石油实验地质, 2021, 43(6): 941-948. doi: 10.11781/sysydz202106941

    WANG Jian, ZHOU Lu, JIN Jun, et al. Pore structure, hydrocarbon occurrence and their relationship with shale oil production in Lucaogou Formation of Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 941-948. doi: 10.11781/sysydz202106941
    [22]
    彭寿昌, 查小军, 雷祥辉, 等. 吉木萨尔凹陷芦草沟组上"甜点"段页岩油储层演化特征及差异性评价[J]. 特种油气藏, 2021, 28(4): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202104005.htm

    PENG Shouchang, ZHA Xiaojun, LEI Xianghui, et al. Evolution characteristics and difference evaluation of shale oil reservoirs in the upper sweet spot interval of Lucaogou Formation in Jimusaer Sag[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202104005.htm
    [23]
    张奎华, 宋明水, 曹忠祥, 等. 博格达地区中二叠统沉积环境与烃源岩特征[J]. 断块油气田, 2021, (1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101003.htm

    ZHANG Kuihua, SONG Mingshui, CAO Zhongxiang, et al. Sedimentary environment and the characteristics of hydrocarbon source rock of the Middle Permian in Bogda area[J]. Fault-Block Oil and Gas Field, 2021, (1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202101003.htm
    [24]
    续海金, 马昌前, 刘凡, 等. 大别山南、北坡花岗岩风化作用的差异及其构造、气候环境意义[J]. 中国科学(D辑), 2002, 32(5): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200205007.htm

    XU Haijin, MA Changqian, LIU Fan, et al. Differences of granitic weathering at the northern and southern feet of Dabie Mountains, Central China: implication for tectonic and climatic environments[J]. Science in China(Series D): Earth Sciences, 2003, 46(7): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200205007.htm
    [25]
    赵明珠, 杨威, 王耀华, 等. 陆相页岩储层连通孔隙系统分布与形成机制: 以川西坳陷上三叠统须家河组为例[J/OL]. 石油实验地质, 2021. (2021-07-15).https://kns.cnki.net/kcms/detail/32.1151.TE.20210715.0841.002.html.

    ZHAO Mingzhu, YANG Wei, WANG Yaohua, et al.Distribution and genetic mechanisms of connected pore systems in continental shale reservoirs a case study of Xujiahe Formation of Upper Triassic, Western Sichuan Depression[J/OL].Petroleum Geology & Experiment, 2021.(2021-07-15).https://kns.cnki.net/kcms/detail/32.1151.TE.20210715.0841.002.html.
    [26]
    杨潇, 姜振学, 宋岩, 等. 渝东南牛蹄塘组与龙马溪组高演化海相页岩全孔径孔隙结构特征对比研究[J]. 高校地质学报, 2016, 22(2): 368-377. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201602017.htm

    YANG Xiao, JIANG Zhenxue, SONG Yan, et al. A comparative study on whole-aperture pore structure characteristics between Niutitang and Longmaxi formation of high-maturity marine shales in southeastern Chongqing belt[J]. Geological Journal of China Universities, 2016, 22(2): 368-377. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201602017.htm
    [27]
    赵凡, 孙德强, 闫存凤, 等. 柴达木盆地中新生代构造演化及其与油气成藏关系[J]. 天然气地球科学, 2013, 24(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305009.htm

    ZHAO Fan, SUN Deqiang, YAN Cunfeng, et al. Meso-Cenozoic tectonic evolution of Qaidam Basin and its relationship with oil and gas accumulation[J]. Natural Gas Geoscience, 2013, 24(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305009.htm
    [28]
    张娜, 乔凤超, 张博, 等. 深部煤系沉积岩孔隙结构特征压汞试验研究[J]. 煤炭科学技术, 2016, 44(10): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201610029.htm

    ZHANG Na, QIAO Fengchao, ZHANG Bo, et al. Experimental study on pore structure features of sedimentary rocks in deep coal measures by mercury intrusion porosimetry[J]. Coal Science and Technology, 2016, 44(10): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201610029.htm
    [29]
    马文辛, 刘树根, 黄文明, 等. 四川盆地周缘筇竹寺组泥页岩储层特征[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202012.htm

    MA Wenxin, LIU Shugen, HUANG Wenming, et al. Mud shale reservoirs characteristics of Qiongzhusi Formation on the margin of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202012.htm
    [30]
    张玉淑, 高东林, 刘永, 等. 柴达木盆地晚更新世湖泊沉积物中黏土矿物特征及环境意义[J]. 矿物岩石地球化学通报, 2014, 33(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401009.htm

    ZHANG Yushu, GAO Donglin, LIU Yong, et al. Characteristics and environmental significance of clay minerals in the Late Pieistocene lake sediment, Qaidam Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401009.htm
    [31]
    程鸣, 傅雪海, 张苗, 等. 沁水盆地古县区块煤系"三气"储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808010.htm

    CHENG Ming, FU Xuehai, ZHANG Miao, et al. Comparative study on porosity and permeability in net confining stress of three natural gases in coal series reservoirs in Guxian County, Qinshui Basin[J]. Natural Gas Geoscience, 2018, 29(8): 1163-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808010.htm
    [32]
    吕端川, 宋金鹏. 浅水三角洲前缘砂体沉积及渗流特征精细表征: 以松辽盆地大庆长垣杏树岗油田为例[J]. 石油实验地质, 2020, 42(1): 88-94. doi: 10.11781/sysydz202001088

    LV Duanchuan, SONG Jinpeng. Characterization of sedimentary and flow characteristics of shallow water delta front sand bodies: Xingshugang Oil Field, Daqing placanticline, Songliao Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 88-94. doi: 10.11781/sysydz202001088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (488) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return