Volume 44 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
YU Yue, SUN Yidi, GAO Rui, DA Lina, HOU Jingwei, YANG Mi. Determination of surface relaxivity for tight sandstone cores based on T2 cut-off value[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 342-349. doi: 10.11781/sysydz202202342
Citation: YU Yue, SUN Yidi, GAO Rui, DA Lina, HOU Jingwei, YANG Mi. Determination of surface relaxivity for tight sandstone cores based on T2 cut-off value[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 342-349. doi: 10.11781/sysydz202202342

Determination of surface relaxivity for tight sandstone cores based on T2 cut-off value

doi: 10.11781/sysydz202202342
  • Received Date: 2021-03-10
  • Rev Recd Date: 2022-02-24
  • Publish Date: 2022-03-28
  • The surface relaxivity for tight cores is commonly determined by the methods of average pore radius (ARS) or surface-to-volume ratio (SVR). The ARS method is time-consuming, and permanent damage to core samples will occur due to the injection of mercury. In this study, a non-destructive method is proposed, instead of the ARS method, to calculate the surface relaxivity of tight core samples based on T2 cut-off value. Firstly, surface relaxivity is calculated using the new method (pseudo T2 cut-off, PTC). Secondly, the calculated surface relaxivity of ARS and SVR methods are compared. Thirdly, the T2 spectrum is converted into pore diameter distribution by choosing appropriate surface relaxivity. Finally, residual oil distribution can be obtained. The ultimate surface relaxivity values for tight sandstone core samples are 5.85, 2.98, 4.66, and 2.17 μm/s. Moreover, we obtained the pore diameter distribution in mesopores and macropores by jointly using these three methods. Residual oil is mainly distributed in micropores and mesopores. The new method proposed in this study is nondestructive and is helpful to quickly and efficiently determine the surface relaxivity of tight cores.

     

  • loading
  • [1]
    邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm

    ZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm
    [2]
    FOLEY I, FAROOQUI S A, KLEINBERG R L. Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces[J]. Journal of Magnetic Resonance, Series A, 1996, 123(1): 95-104. doi: 10.1006/jmra.1996.0218
    [3]
    KENYON W E. Petrophysical principles of applications of NMR logging[J]. The Log Analyst, 1997, 38(2): 21-40.
    [4]
    KLEINBERG R L, KENYON W E, MITRA P P, et al. Mechanism of NMR relaxation of fluids in rock[J]. Journal of Magnetic Resonance, Series A, 1994, 108(2): 206-214. doi: 10.1006/jmra.1994.1112
    [5]
    XIAO Liang, MAO Zhiqiang, ZOU Changchun, et al. A new methodo-logy of constructing pseudo capillary pressure (Pc) curves from nuclear magnetic resonance (NMR) logs[J]. Journal of Petroleum Science and Engineering, 2016, 147: 154-167. doi: 10.1016/j.petrol.2016.05.015
    [6]
    SULUCARNAIN I, SONDERGELD C H, RAI C S. An NMR study of shale wettability and effective surface relaxivity[C]//Proceedings of the SPE Canadian Unconventional Resources Conference. Calgary, Alberta, Canada: Society of Petroleum Engineers, 2012.
    [7]
    WASHBURN K E, SANDOR M, CHENG Yuesheng. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy[J]. Journal of Magnetic Resonance, 2017, 275: 80-89. doi: 10.1016/j.jmr.2016.12.004
    [8]
    CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119
    [9]
    HOSSAIN Z, GRATTONI C A, SOLYMAR M, et al. Petrophysical properties of greensand as predicted from NMR measurements[J]. Petroleum Geoscience, 2011, 17(2): 111-125. doi: 10.1144/1354-079309-038
    [10]
    LIVO K, SAIDIAN M, PRASAD M. Effect of paramagnetic mineral content and distribution on nuclear magnetic resonance surface relaxivity in organic-rich Niobrara and Haynesville shales[J]. Fuel, 2020, 269: 117417. doi: 10.1016/j.fuel.2020.117417
    [11]
    DALAS F, KORB J P, POURCHET S, et al. Surface relaxivity of cement hydrates[J]. The Journal of Physical Chemistry C, 2014, 118(16): 8387-8396. doi: 10.1021/jp500055p
    [12]
    BENAVIDES F, LEIDERMAN R, SOUZA A, et al. Estimating the surface relaxivity as a function of pore size from NMR T2 distributions and micro-tomographic images[J]. Computers & Geosciences, 2017, 106: 200-208.
    [13]
    SAIDIAN M, PRASAD M. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: a case study of Middle Bakken and Three Forks formations[J]. Fuel, 2015, 161: 197-206. doi: 10.1016/j.fuel.2015.08.014
    [14]
    ZHENG Sijian, YAO Yanbin, LIU Dameng, et al. Characterizations of full-scale pore size distribution, porosity and permeability of coals: a novel methodology by nuclear magnetic resonance and fractal analysis theory[J]. International Journal of Coal Geology, 2018, 196: 148-158. doi: 10.1016/j.coal.2018.07.008
    [15]
    ZHAO Peiqiang, WANG Liang, XU Chenhao, et al. Nuclear magnetic resonance surface relaxivity and its advanced application in calcula-ting pore size distributions[J]. Marine and Petroleum Geology, 2020, 111: 66-74. doi: 10.1016/j.marpetgeo.2019.08.002
    [16]
    WESTPHAL H, SURHOLT I, KIESL C, et al. NMR Measurements in carbonate rocks: problems and an approach to a solution[J]. Pure and Applied Geophysics, 2005, 162(3): 549-570. doi: 10.1007/s00024-004-2621-3
    [17]
    TESTAMANTI M N, REZAEE R. Determination of NMR T2 cut-off for clay bound water in shales: a case study of Carynginia Formation, Perth Basin, western Australia[J]. Journal of Petroleum Science and Engineering, 2017, 149: 497-503. doi: 10.1016/j.petrol.2016.10.066
    [18]
    ZHENG Sijian, YAO Yanbin, LIU Dameng, et al. Nuclear magnetic resonance surface relaxivity of coals[J]. International Journal of Coal Geology, 2019, 205: 1-13. doi: 10.1016/j.coal.2019.02.010
    [19]
    张亚东, 高光辉, 刘正鹏, 等. 致密砂岩储层流体差异性赋存特征: 以鄂尔多斯盆地三叠系延长组为例[J]. 石油实验地质, 2021, 43(6): 1024-1030. doi: 10.11781/sysydz2021061024

    ZHANG Yadong, GAO Guanghui, LIU Zhengpeng, et al. Differential characteristics of fluid occurrence in tight sandstone reservoirs: a case study of Triassic Yanchang Formation in Ordos Basin[J]. Petroleum Geology and Experiment, 2021, 43(6): 1024-1030. doi: 10.11781/sysydz2021061024
    [20]
    王伟, 陈朝兵, 许爽, 等. 鄂尔多斯盆地延长组致密砂岩不同尺度孔喉分形特征及其控制因素[J]. 石油实验地质, 2022, 44(1): 33-40. doi: 10.11781/sysydz202201033

    WANG Wei, CHEN Zhaobing, XU Shuang, et al. Fractal characteristics and its controlling factors of pore-throat with different scales in tight sandstones of the Yanchang Formation in the Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 33-40. doi: 10.11781/sysydz202201033
    [21]
    SING K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603
    [22]
    AYAPPA K G, DAVIS H T, DAVIS E A, et al. Capillary pressure: centrifuge method revisited[J]. AIChE Journal, 1989, 35(3): 365-372. doi: 10.1002/aic.690350304
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (805) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return