Volume 44 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
MA Yuanyuan, TAO Cheng, BA Liqiang, WANG Jie, LI Jipeng, LI Luyun, SUN Yongge. Measurements of position-specific carbon isotopic compositions in propane by on-line Gas Chromatography-Pyrolysis-Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-Py-GC-IRMS) and its preliminary application[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 350-356. doi: 10.11781/sysydz202202350
Citation: MA Yuanyuan, TAO Cheng, BA Liqiang, WANG Jie, LI Jipeng, LI Luyun, SUN Yongge. Measurements of position-specific carbon isotopic compositions in propane by on-line Gas Chromatography-Pyrolysis-Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-Py-GC-IRMS) and its preliminary application[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 350-356. doi: 10.11781/sysydz202202350

Measurements of position-specific carbon isotopic compositions in propane by on-line Gas Chromatography-Pyrolysis-Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-Py-GC-IRMS) and its preliminary application

doi: 10.11781/sysydz202202350
  • Received Date: 2021-12-20
  • Rev Recd Date: 2022-02-10
  • Publish Date: 2022-03-28
  • In this study, an on-line Gas Chromatography-Pyrolysis-Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-Py-GC-IRMS) was established to conduct position-specific isotope analysis (PSIA) by enrichment of compound interested, chromatographic separation, instantaneous pyrolysis and isotope ratio measurement. Propane, as its instantaneous pyrolysis can be kinetically controlled, was selected for tests. The molar conversion (mol%) of propane during pyrolysis and the carbon isotopic compositions of pyrolysis products upon temperature sequence show that the optimal pyrolysis temperature of propane is 780-820 ℃ for its position-specific carbon isotope analysis. Integrated with carbon isotopic fractionation during the propane pyrolysis, the carbon isotopes of central and terminal carbon were successfully calculated. Two natural gas samples from the Daniudi Gas Field, Ordos Basin were collected for central and terminal carbon isotope measurements in propane. Similar δ13C values of central carbon of propane in natural gas from the Ordovician and Carboniferous-Permian reservoirs could be indicative of the same source strata. While 13C-enrichment in the terminal C-atom of propane in natural gas from the Carboniferous-Permian reservoirs probably indicates that natural gas accumulated in the Carboniferous-Permian reservoir maybe have experienced a higher thermal maturation compared to that from the Ordovician reservoirs. The results suggest that the PSIA in propane can be a potentially powerful tool to probe the mechanisms on natural gas generation.

     

  • loading
  • [1]
    GALIMOV E M, IVLEV A A, KUZNETSOVA N G. Carbon isotope composition of gaseous hydrocarbons in petroleum and the problem of their origin[J]. Geochem Int, 1970, 7: 594-603.
    [2]
    STAHL W, CAREY B D. Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, West Texas[J]. Chemical Geology, 1975, 16(4): 257-267. doi: 10.1016/0009-2541(75)90065-0
    [3]
    SCHOELL M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 1980, 44(5): 649-661. doi: 10.1016/0016-7037(80)90155-6
    [4]
    戴金星, 戚厚发, 宋岩. 鉴别煤成气和油型气若干指标的初步探讨[J]. 石油学报, 1985, 6(2): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198502007.htm

    DAI Jinxing, QI Houfa, SONG Yan. On the indicators for identi-fying gas from oil and gas from coal measure[J]. Acta Petrolei Sinica, 1985, 6(2): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198502007.htm
    [5]
    CHUNG H M, GORMLY J R, SQUIRES R M. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution[J]. chemical Geology, 1988, 71(1/3): 97-104.
    [6]
    WHITICAR M J. Correlation of natural gases with their sources[M]//MAGOON L B, DOW W G. AAPG memoir 60, the petroleum system-from source to trap. Tulsa: American Association of Petroleum Geologists, 1994: 261-283.
    [7]
    宋岩, 徐永昌. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 2005, 32(4): 24-29. doi: 10.3321/j.issn:1000-0747.2005.04.004

    SONG Yan, XU Yongchang. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 2005, 32(4): 24-29. doi: 10.3321/j.issn:1000-0747.2005.04.004
    [8]
    LIU Changjie, MCGOVERN G P, LIU Peng, et al. Position-specific carbon and hydrogen isotopic compositions of propane from natural gases with quantitative NMR[J]. Chemical Geology, 2018, 491: 14-26. doi: 10.1016/j.chemgeo.2018.05.011
    [9]
    LI Xiaoqiang, MCGOVERN G P, HORITA J. Kinetics of propane cracking and position-specific isotope fractionation: insights into the origins of natural gases[J]. Organic Geochemistry, 2021, 155: 104234. doi: 10.1016/j.orggeochem.2021.104234
    [10]
    GAO Li, HE Panqing, JIN Yanqi, et al. Determination of position-specific carbon isotope ratios in propane from hydrocarbon gas mixtures[J]. Chemical Geology, 2016, 435: 1-9. doi: 10.1016/j.chemgeo.2016.04.019
    [11]
    GILBERT A, LOLLAR B S, MUSAT F, et al. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6653-6658. doi: 10.1073/pnas.1817784116
    [12]
    PETERSON B K, FORMOLO M J, LAWSON M. Molecular and detailed isotopic structures of petroleum: kinetic Monte Carlo analysis of alkane cracking[J]. Geochimica et Cosmochimica Acta, 2018, 243: 169-185. doi: 10.1016/j.gca.2018.09.012
    [13]
    LIU Changjie, LIU Peng, MCGOVERN G P, et al. Molecular and intramolecular isotope geochemistry of natural gases from the Woodford shale, Arkoma Basin, Oklahoma[J]. Geochimica et Cosmochimica Acta, 2019, 255: 188-204. doi: 10.1016/j.gca.2019.04.020
    [14]
    ZHAO Heng, LIU Changjie, LARSON T E, et al. Bulk and position-specific isotope geochemistry of natural gases from the Late Cretaceous Eagle Ford shale, south Texas[J]. Marine and Petroleum Geology, 2020, 122: 104659. doi: 10.1016/j.marpetgeo.2020.104659
    [15]
    ABELSON P H, HOERING T C. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 1961, 47(5): 623-632. doi: 10.1073/pnas.47.5.623
    [16]
    CORSO T N, BRENNA J T. High-precision position-specific isotope analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(4): 1049-1053. doi: 10.1073/pnas.94.4.1049
    [17]
    GILBERT A, HATTORI R, SILVESTRE V, et al. Comparison of IRMS and NMR spectrometry for the determination of intramolecular 13C isotope composition: application to ethanol[J]. Talanta, 2012, 99: 1035-1039. doi: 10.1016/j.talanta.2012.05.023
    [18]
    GILBERT A, YAMADA K, YOSHIDA N. Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11-C31) using isotopic 13C NMR[J]. Organic Geochemistry, 2013, 62: 56-61. doi: 10.1016/j.orggeochem.2013.07.004
    [19]
    ROSSMANN A, BUTZENLECHNER M, SCHMIDT H L. Evidence for a nonstatistical carbon isotope distribution in natural glucose[J]. Plant Physiology, 1991, 96: 609-614. doi: 10.1104/pp.96.2.609
    [20]
    HUANG D S, WU S H, WANG Y S, et al. Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis[J]. ChemBioChem, 2002, 3(8): 760-765. doi: 10.1002/1439-7633(20020802)3:8<760::AID-CBIC760>3.0.CO;2-K
    [21]
    CORSO T N, LEWIS B A, BRENNA J T. Reduction of fatty acid methyl esters to fatty alcohols to improve volatility for isotopic analysis without extraneous carbon[J]. Analytical Chemistry, 1998, 70(18): 3752-3756. doi: 10.1021/ac9802527
    [22]
    HATTORI R, YAMADA K, KIKUCHI M, et al. Intramolecular carbon isotope distribution of acetic acid in vinegar[J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9049-9053. doi: 10.1021/jf200227e
    [23]
    GILBERT A, YAMADA K, YOSHIDA N. Accurate method for the determination of intramolecular 13C isotope composition of ethanol from aqueous solutions[J]. Analytical Chemistry, 2013, 85: 6566-6570. doi: 10.1021/ac401021p
    [24]
    GILBERT A, YAMADA K, SUDA K, et al. Measurement of position-specific 13C isotopic composition of propane at the nanomole level[J]. Geochimica et Cosmochimica Acta, 2016, 177: 205-216. doi: 10.1016/j.gca.2016.01.017
    [25]
    LI Yun, ZHANG Lin, XIONG Yongqiang, et al. Determination of position-specific carbon isotope ratios of propane from natural gas[J]. Organic Geochemistry, 2018, 119: 11-21. doi: 10.1016/j.orggeochem.2018.02.007
    [26]
    PIASECKI A, SESSIONS A L, LAWSON M, et al. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer[J]. Geochimica et Cosmochimica Acta, 2016, 188: 58-72. doi: 10.1016/j.gca.2016.04.048
    [27]
    PIASECKI A, SESSIONS A, PETERSON B, et al. Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory[J]. Geochimica et Cosmochimica Acta, 2016, 190: 1-12. doi: 10.1016/j.gca.2016.06.003
    [28]
    PIASECKI A, SESSIONS A, LAWSON M, et al. Position-specific 13C distributions within propane from experiments and natural gas samples[J]. Geochimica et Cosmochimica Acta, 2018, 220: 110-124. doi: 10.1016/j.gca.2017.09.042
    [29]
    LIU Quanyou, JIN Zhijun, MENG Qingqiang, et al. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2015, 107: 1-11. doi: 10.1016/j.jseaes.2015.04.001
    [30]
    WU Xiaoqi, LIU Quanyou, ZHU Jianhui, et al. Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field, the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 412-425. doi: 10.1016/j.marpetgeo.2016.10.022
    [31]
    孙晓, 王杰, 陶成, 等. 鄂尔多斯盆地大牛地下古生界天然气地球化学特征及其来源综合判识[J]. 石油实验地质, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307

    SUN Xiao, WANG Jie, TAO Cheng, et al. Evaluation of geochemical characteristics and source of natural gas in Lower Paleozoic, Daniudi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307
    [32]
    WU Xiaoqi, ZHU Jianhui, NI Chunhua, et al. Genetic types and sources of Lower Paleozoic natural gas in the Daniudi gas field, Ordos Basin, China[J]. Energy Exploration & Exploitation, 2017, 35(2): 218-236.
    [33]
    戴金星, 邹才能, 陶士振, 等. 中国大气田形成条件和主控因素[J]. 天然气地球科学, 2007, 18(4): 473-484. doi: 10.3969/j.issn.1672-1926.2007.04.001

    DAI Jinxing, ZOU Caineng, TAO Shizhen, et al. Formation conditions and main controlling factors of large gas fields in China[J]. Natural Gas Geoscience, 2007, 18(4): 473-484. doi: 10.3969/j.issn.1672-1926.2007.04.001
    [34]
    杨华, 刘新社. 鄂尔多斯盆地古生界煤成气勘探进展[J]. 石油勘探与开发, 2014, 41(2): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402002.htm

    YANG Hua, LIU Xinshe. Progress of Paleozoic coal-derived gas exploration in Ordos Basin, West China[J]. Petroleum Exploration and Development, 2014, 41(2): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402002.htm
    [35]
    杨智, 何生, 邹才能, 等. 鄂尔多斯盆地北部大牛地气田成岩成藏耦合关系[J]. 石油学报, 2010, 31(3): 373-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003004.htm

    YANG Zhi, HE Sheng, ZOU Caineng, et al. Coupling relationship between reservoir diagenesis and natural gas accumulation of Daniudi Gas Field in North Ordos Basin[J]. Acta Petrolei Sinica, 2010, 31(3): 373-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003004.htm
    [36]
    黄第藩, 熊传武, 杨俊杰, 等. 鄂尔多斯盆地中部气田气源判识和天然气成因类型[J]. 天然气工业, 1996, 16(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG606.000.htm

    HUANG Difan, XIONG Chuanwu, YANG Junjie, et al. Gas source discrimination and natural gas genetic types of Central Gas Field in E'Erduosi Basin[J]. Natural Gas Industry, 1996, 16(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG606.000.htm
    [37]
    李贤庆, 胡国艺, 李剑, 等. 鄂尔多斯盆地中部气田天然气混源的地球化学标志与评价[J]. 地球化学, 2003, 32(3): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200303009.htm

    LI Xianqing, HU Guoyi, LI Jian, et al. Geochemical indexes and evaluation of mixed origin natural gases from Central Gas Field in the Ordos Basin[J]. Geochimica, 2003, 32(3): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200303009.htm
    [38]
    DAI Jinxing, LI Jian, LUO Xia, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36(12): 1617-1635.
    [39]
    TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin: Springer-Verlag, 1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (623) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return