Volume 44 Issue 3
May  2022
Turn off MathJax
Article Contents
MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552
Citation: MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552

Identification method for the origin of natural hydrogen gas in geological bodies

doi: 10.11781/sysydz202203552
  • Received Date: 2022-01-12
  • Rev Recd Date: 2022-04-28
  • Publish Date: 2022-05-28
  • As one of the clean energies, hydrogen has attracted more and more global research interest. With the acceleration of hydrogen energy economic construction in China, higher requirements have been put forward for the production and storage of hydrogen. At present, the main way to obtain hydrogen is to produce hydrogen artificially. Whether there is a high content of hydrogen in nature and its origin are the premise for the discovery and utilization of natural hydrogen, but the related research is weak. The discrimination of hydrogen origin, especially deep and shallow source origin, depends mainly on the isotopic composition characteristics of accompanied rare gases, which is difficult to be determined in some cases, the origin of hydrogen is then difficult to be identified. Based on the analysis and analytical results of hydrogen and associated gas content and isotopic composition in different structural parts, this paper analyzes the duration and content variation characteristics of high content hydrogen in the Kansas Basin, USA. A discrimination method for hydrogen genesis based on the relationship between methane and hydrogen content and hydrogen isotopic composition has been proposed, access of hydrogen genesis identification is easier to be achieved. Based on the above research, it is believed that there is a hydrogen supplement mechanism with underground conditions, which can continuously produce high content of natural hydrogen. It is considered that it is a favorable distribution area for high content of hydrogen around the plate collision zone. The hydrogen source can be classified by the hydrogen isotopic composition of -700‰ (VSMOW) and ln(CH4/H2). Shell source hydrogen has a δD value generally greater than -700‰ and a ln(CH4/H2) value lower than -8. Mantle derived hydrogen has a δD value generally lower than -700‰ and a ln(CH4/H2) value greater than -4. Hydrogen remaining after CO2 rich fluid is oxidized on the surface has a δD value greater than -700‰ and a ln(CH4/H2) value greater than -8. After the deep source hydrogen rich fluid is oxidized on the surface, the residual hydrogen has a δD value lower than -700 ‰ and a ln(CH4/H2) value under -4. This proposed method can quickly classify the origin of hydrogen without determining the composition and isotopic composition of rare gases.

     

  • loading
  • [1]
    Hydrogen Council. Hydrogen scaling up: a sustainable pathway for the global energy transition[EB/OL]. [2017-11-13]. http://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-Scaling-up_Hydrogen-Council_2017.compressed.pdf.
    [2]
    凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201903013.htm

    LING Wen, LIU Wei, LI Yulei, et al. Development strategy of hydrogen infrastructure industry in China[J]. Strategic Study of CAE, 2019, 21(3): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201903013.htm
    [3]
    2019年国务院政府工作报告[EB/OL]. (2019-03-05). http://www.gov.cn/zhuanti/2019qglh/2019lhzfgzbg/index.htm.

    2019 State council government work report[EB/OL]. (2019-03-05). http://www.gov.cn/zhuanti/2019qglh/2019lhzfgzbg/index.htm.
    [4]
    邹才能, 张福东, 郑德温, 等. 人工制氢及氢工业在我国"能源自主"中的战略地位[J]. 天然气工业, 2019, 39(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901001.htm

    ZOU Caineng, ZHANG Fudong, ZHENG Dewen, et al. Strategic role of the synthetic hydrogen production and industry in Energy Independence of China[J]. Natural Gas Industry, 2019, 39(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901001.htm
    [5]
    符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201910004.htm

    FU Guanyun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201910004.htm
    [6]
    PETERSEN H C. Does natural hydrogen exist?[J]. International Journal of Hydrogen Energy, 1990, 15(1): 55. doi: 10.1016/0360-3199(90)90130-Q
    [7]
    WOOLNOUGH W G. Natural gas in Australia and New Guinea[J]. AAPG Bulletin, 1934, 18(2): 226-242.
    [8]
    BOHDANOWICZ C. Natural gas occurrences in Russia (U.S.S.R. )[J]. AAPG Bulletin, 1934, 18(6): 746-759.
    [9]
    NEWCOMBE R B. Natural gas fields of Michigan[C]//Geology of Natural Gas. Tulsa: AAPG, 1935: 787-812.
    [10]
    MEINCKE W. Zur herkunft des wasserstoffs in tiefenproben[J]. Zeitschrift fur Angewandte Geologie, 1967, 13(7): 346-347.
    [11]
    NEWELL K D, DOVETON J H, MERRIAM D F, et al. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in northeastern Kansas[J]. Natural Resources Research, 2007, 16(3): 277-292. doi: 10.1007/s11053-007-9052-7
    [12]
    郭占谦. 从全球油气田分布看我国东南沿海火山岩覆盖区的含油气前景[J]. 石油实验地质, 2001, 23(2): 122-132. doi: 10.11781/sysydz200102122

    GUO Zhanqian. Hydrocarbon-bearing prospects of volcanic rock cove red regions in the southeastern coastal waters of China judged by the distribution of global oil and gas fields[J]. Petroleum Geology&Experiment, 2001, 23(2): 122-132. doi: 10.11781/sysydz200102122
    [13]
    HAWKES H E. Geothermal hydrogen[J]. Mining Engineering, 1980, 1(6): 671-675.
    [14]
    ABRAJANO T A, STURCHIO N C, BOHLKE J K, et al. Methane-hydrogen gas seeps, Zambales ophiolite, Philippines: deep or shallow origin?[J]. Chemical Geology, 1988, 71(1/3): 211-222.
    [15]
    NEAL C, STANGER G. Hydrogen generation from mantle source rocks in Oman[J]. Earth and Planetary Science Letters, 1983, 66: 315-320.
    [16]
    LYON G L, HULSTON J R. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1161-1171.
    [17]
    JEFFREY A W A, KAPLAN I R. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden[J]. Chemical Geology, 1988, 71(1/3): 237-255.
    [18]
    孟庆强, 金之钧, 刘文汇, 等. 天然气中伴生氢气的资源意义及其分布[J]. 石油实验地质, 2014, 36(6): 712-717. doi: 10.11781/sysydz201406712

    MENG Qingqiang, JIN Zhijun, LIU Wenhui, et al. Distribution and genesis of hydrogen gas in natural gas[J]. Petroleum Geology&Experiment, 2014, 36(6): 712-717. doi: 10.11781/sysydz201406712
    [19]
    COVENEY JR R M, GOEBEL E D, ZELLER E J, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bulletin, 1987, 71(1): 39-48.
    [20]
    GUÉLARD J, BEAUMONT V, ROUCHON V, et al. Natural H2 in Kansas: deep or shallow origin?[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(5): 1841-1865.
    [21]
    GOEBEL E, COVENEY R, ANGINO E, et al. Geology, composition, isotopes of naturally occurring H2/N2 rich gas from wells near Junction City, Kansas[J]. Oil and Gas Journal, 1984, 82(19): 215-222.
    [22]
    VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223: 437-461.
    [23]
    KLEIN F, BACH W, JÖNS N, et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the mid-Atlantic ridge[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6868-6893.
    [24]
    MAYHEW L E, ELLISON E T, MCCOLLOM T M, et al. Hydrogen generation from low-temperature water-rock reactions[J]. Nature Geoscience, 2013, 6(6): 478-484.
    [25]
    OKLAND I, HUANG S, THORSETH I H, et al. Formation of H2, CH4 and N-species during low-temperature experimental alteration of ultramafic rocks[J]. Chemical Geology, 2014, 387: 22-34.
    [26]
    NEUBECK A, DUC N T, BASTVIKEN D, et al. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70℃[J]. Geochemical Transactions, 2011, 12(1): 6.
    [27]
    KITA I, MATSUO S, WAKITA H, et al. D/H ratios of H2 in soil gases as an indicator of fault movements[J]. Geochemical Journal, 1980, 14(6): 317-320.
    [28]
    上官志冠, 白春华, 孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学(D辑: 地球科学), 2000, 30(4): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm

    SHANGGUAN Zhiguan, BAI Chunhua, SUN Mingliang. Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong county, Yunnan Province, China[J]. Science in China (Series D: Earth Sciences), 2000, 43(2): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm
    [29]
    孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216. doi: 10.11781/sysydz202102208

    MENG Qingqiang, JIN Zhijun, SUN Dongsheng, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology&Experiment, 2021, 43(2): 208-216. doi: 10.11781/sysydz202102208
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (1797) PDF downloads(205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return