Citation: | YUAN Liping, JIANG Wenmin, LI Yun, ZHANG Lin, WANG Jianfeng, WANG Wei, XIONG Yongqiang. A comparison of geochemical features of source rocks of Eocene Wenchang Formation in the deep and shallow water zones of Pearl River Mouth Basin, SE China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 866-876. doi: 10.11781/sysydz202205866 |
[1] |
陈长民. 珠江口盆地东部石油地质及油气藏形成条件初探[J]. 中国海上油气地质, 2000, 14(2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002000.htm
CHEN Changmin. Petroleum geology and conditions for hydrocarbon accumulation in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002000.htm
|
[2] |
米立军, 柳保军, 何敏, 等. 南海北部陆缘白云深水区油气地质特征与勘探方向[J]. 中国海上油气, 2016, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm
MI Lijun, LIU Baojun, HE Min, et al. Petroleum geology characte-ristics and exploration direction in Baiyun deep water area, northern continental margin of the South China Sea[J]. China Offshore Oil and Gas, 2016, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm
|
[3] |
熊万林, 龙祖烈, 朱俊章, 等. 阳江凹陷恩平21洼不同沉积环境烃源岩发育特征及成藏贡献[J]. 油气地质与采收率, 2021, 28(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105005.htm
XIONG Wanlin, LONG Zulie, ZHU Junzhang, et al. Development characteristics and accumulation contribution of source rocks in different sedimentary environments in Enping 21 Subsag of Yangjiang Sag[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202105005.htm
|
[4] |
龙祖烈, 石创, 朱俊章, 等. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
LONG Zulie, SHI Chuang, ZHU Junzhang, et al. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
|
[5] |
张文昭, 张厚和, 李春荣, 等. 珠江口盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 346-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103012.htm
ZHANG Wenzhao, ZHANG Houhe, LI Chunrong, et al. Petroleum exploration history and enlightenment in Pearl River Mouth Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 346-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103012.htm
|
[6] |
熊万林, 龙祖烈, 朱俊章, 等. 珠江口盆地阳江凹陷不同成藏期次原油成因及混源比例分析[J]. 石油实验地质, 2021, 43(2): 315-324. doi: 10.11781/sysydz202102315
XIONG Wanlin, LONG Zulie, ZHU Junzhang, et al. Origin and mixing ratio of crude oils in different charging episodes of Yangjiang Sag of Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 315-324. doi: 10.11781/sysydz202102315
|
[7] |
王绪诚, 陈维涛, 何叶, 等. 珠江口盆地惠西南地区古新世火山机构对有利储层的控制作用[J]. 石油实验地质, 2022, 44(3): 466-475. doi: 10.11781/sysydz202203466
WANG Xucheng, CHEN Weitao, HE Ye, et al. Control of Paleocene volcanic edifice on favorable reservoirs: a case study of the southwestern Huizhou Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2022, 44(3): 466-475. doi: 10.11781/sysydz202203466
|
[8] |
吴宇翔, 柳保军, 张春生, 等. 珠江口盆地白云凹陷古近纪挠曲缓坡带三角洲沉积过程响应水槽模拟[J]. 石油实验地质, 2022, 44(3): 476-486. doi: 10.11781/sysydz202203476
WU Yuxiang, LIU Baojun, ZHANG Chunsheng, et al. Flume simulation of response of deltaic sedimentary process to Paleogene flexural gentle slope belt in Baiyun Sag, Pearl River Mouth Basin, northern South China Sea[J]. Petroleum Geology & Experiment, 2022, 44(3): 476-486. doi: 10.11781/sysydz202203476
|
[9] |
FU Jian, CHEN Cong, LI Meijun, et al. Petroleum charging history of Neogene reservoir in the Baiyun Sag, Pearl River Mouth Basin, South China Sea[J]. Journal of Petroleum Science and Engineering, 2020, 190: 106945. doi: 10.1016/j.petrol.2020.106945
|
[10] |
LI Wenhao, ZHANG Zhihuan, LI Youchuan, et al. The effect of river-delta system on the formation of the source rocks in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology, 2016, 76: 279-289. doi: 10.1016/j.marpetgeo.2016.05.033
|
[11] |
HE Dashuang, HOU Dujie, CHEN Tao. Geochemical characteristics and analysis of crude-oil source in the deep-water area of the Baiyun Sag, South China Sea[J]. Russian Geology and Geophysics, 2018, 59(5): 499-511. doi: 10.1016/j.rgg.2018.04.004
|
[12] |
MURRAY I P, LOVE G D, SNAPE C E, et al. Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays[J]. Organic Geochemistry, 1998, 29(5/7): 1487-1505.
|
[13] |
PETERSEN H I, HERTLE M, SULSBRVCK H. Upper Jurassic-lowermost Cretaceous marine shale source rocks (Farsund Formation), North Sea: kerogen composition and quality and the adverse effect of oil-based mud contamination on organic geochemical analyses[J]. International Journal of Coal Geology, 2017, 173: 26-39. doi: 10.1016/j.coal.2017.02.006
|
[14] |
BJORØY M, HALL K, GILLYON P, et al. Carbon isotope variations in n-alkanes and isoprenoids of whole oils[J]. Chemical Geology, 1991, 93(1/2): 13-20.
|
[15] |
LOVE G D, SNAPE C E, CARR A D, et al. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J]. Organic Geochemistry, 1995, 23(10): 981-986. doi: 10.1016/0146-6380(95)00075-5
|
[16] |
LOCKHART R S, MEREDITH W, LOVE G D, et al. Release of bound aliphatic biomarkers via hydropyrolysis from type Ⅱ kerogen at high maturity[J]. Organic Geochemistry, 2008, 39(8): 1119-1124. doi: 10.1016/j.orggeochem.2008.03.016
|
[17] |
李二庭, 向宝力, 李际, 等. 甾烷和藿烷的国产X型分子筛分离制备实验研究[J]. 石油实验地质, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713
LI Erting, XIANG Baoli, LI Ji, et al. Separation of steranes and hopanes by domestic X-type molecular sieves[J]. Petroleum Geology & Experiment, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713
|
[18] |
王圣柱, 王千军, 张关龙, 等. 准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J]. 油气地质与采收率, 2020, 27(4): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004003.htm
WANG Shengzhu, WANG Qianjun, ZHANG Guanlong, et al. Deve-lopment mode and geochemical characteristics of Carboniferous source rocks in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004003.htm
|
[19] |
刁帆, 王建伟, 陈晓娜, 等. 渤海湾盆地南堡凹陷高尚堡地区油源对比及高蜡油成因[J]. 石油实验地质, 2020, 42(1): 117-125. doi: 10.11781/sysydz202001117
DIAO Fan, WANG Jianwei, CHEN Xiaona, et al. Correlation of oils and source rocks and genesis of high wax oils in Gaoshangpu area, Nanpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 117-125. doi: 10.11781/sysydz202001117
|
[20] |
石正勇, 金芸芸, 李杭兵, 等. 春光区块白垩系稠油地球化学特征及成因分析[J]. 特种油气藏, 2020, 27(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002006.htm
SHI Zhengyong, JIN Yunyun, LI Hangbing, et al. Geochemical properties and genesis of Cretaceous heavy-oil in the block Chunguang[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002006.htm
|
[21] |
LIAO Yuhong, FANG Yunxin, WU Liangliang, et al. The characte-ristics of the biomarkers and δ13C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis[J]. Organic Geochemistry, 2012, 46: 56-65. doi: 10.1016/j.orggeochem.2012.01.014
|
[22] |
LOVE G D, SNAPE C E, FALLICK A E. Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a type Ⅰ oil shale[J]. Organic Geochemistry, 1998, 28(12): 797-811. doi: 10.1016/S0146-6380(98)00050-3
|
[23] |
朱信旭, 王秋玲, 陈键, 等. 塔里木盆地寒武系干酪根催化加氢热解产物中正构烷烃的分布与碳同位素组成特征[J]. 地球化学, 2019, 48(5): 447-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905002.htm
ZHU Xinxu, WANG Qiuling, CHEN Jian, et al. Distribution and carbon isotopic compositions of n-alkanes from the catalytic hydropyrolysis of the Cambrian kerogen in the Tarim Basin[J]. Geochimica, 2019, 48(5): 447-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905002.htm
|
[24] |
JIANG Wenmin, LI Yun, YANG Chao, et al. Organic geochemistry of source rocks in the Baiyun Sag of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 124: 104836. doi: 10.1016/j.marpetgeo.2020.104836
|
[25] |
龙祖烈, 陈聪, 马宁, 等. 珠江口盆地深水区白云凹陷油气成因来源与成藏特征[J]. 中国海上油气, 2020, 32(4): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004004.htm
LONG Zulie, CHEN Cong, MA Ning, et al. Geneses and accumulation characteristics of hydrocarbons in Baiyun Sag, deep water area of Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2020, 32(4): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004004.htm
|
[26] |
ZHANG Shuichang, LIANG Digang, GONG Zaisheng, et al. Geoche-mistry of petroleum systems in the eastern Pearl River Mouth Basin: evidence for mixed oils[J]. Organic Geochemistry, 2003, 34(7): 971-991.
|
[27] |
ZHENG Yijun, LIAO Yuhong, WANG Yunpeng, et al. Organic geochemical characteristics, mineralogy, petrophysical properties, and shale gas prospects of the Wufeng-Longmaxi shales in Sanquan Town of the Nanchuan District, Chongqing[J]. AAPG Bulletin, 2018, 102(11): 2239-2265.
|
[28] |
傅宁, 朱雷. 珠一坳陷惠州西凹混源油研究[J]. 中国石油勘探, 2007, 12(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200702003.htm
FU Ning, ZHU Lei. Research on mixed oil in western Huizhou Sag of Zhu Ⅰ Depression[J]. China Petroleum Exploration, 2007, 12(2): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200702003.htm
|
[29] |
施和生, 朱俊章, 姜正龙, 等. 珠江口盆地珠一坳陷油气资源再评价[J]. 中国海上油气, 2009, 21(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200901003.htm
SHI Hesheng, ZHU Junzhang, JIANG Zhenglong, et al. Hydrocarbon resources reassessment in Zhu Ⅰ Depression, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2009, 21(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200901003.htm
|
[30] |
朱俊章, 施和生, 何敏, 等. 珠江口盆地白云凹陷深水区LW3-1-1井天然气地球化学特征及成因探讨[J]. 天然气地球科学, 2008, 19(2): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200802017.htm
ZHU Junzhang, SHI Hesheng, HE Min, et al. Origins and geoche-mical characteristics of gases in LW3-1-1 well in the deep sea region of Baiyun Sag, Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2008, 19(2): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200802017.htm
|
[31] |
张功成, 杨海长, 陈莹, 等. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷[J]. 天然气工业, 2014, 34(11): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411003.htm
ZHANG Gongcheng, YANG Haichang, CHEN Ying, et al. The Baiyun Sag: a giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(11): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411003.htm
|
[32] |
朱明, 张向涛, 黄玉平, 等. 珠江口盆地烃源岩特征及资源潜力[J]. 石油学报, 2019, 40(S1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1005.htm
ZHU Ming, ZHANG Xiangtao, HUANG Yuping, et al. Source rock characteristics and resource potential in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1005.htm
|
[33] |
王宁, 朱庆增, 谢曼曼, 等. 尿素络合法分离—气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素[J]. 岩矿测试, 2015, 34(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504017.htm
WANG Ning, ZHU Qingzeng, XIE Manman, et al. An improved urea adduction method for analyzing carbon isotope of ppm-level n-alkanes in soil and plant samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504017.htm
|
[34] |
MARZI R, TORKELSON B E, OLSON R K. A revised carbon preference index[J]. Organic Geochemistry, 1993, 20(8): 1303-1306.
|
[35] |
吴亮亮, 廖玉宏, 方允鑫, 等. 不同成熟度烃源岩的催化加氢热解与索氏抽提在生物标志物特征上的对比[J]. 科学通报, 2012, 57(32): 3067-3077. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201232013.htm
WU Liangliang, LIAO Yuhong, FANG Yunxin, et al. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities[J]. Chinese Science Bulletin, 2013, 58(3): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201232013.htm
|
[36] |
PETERS K E, MOLDOWAN J M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993.
|
[37] |
GELPI E, SCHNEIDER H, MANN J, et al. Hydrocarbons of geoche-mical significance in microscopic algae[J]. Phytochemistry, 1970, 9(3): 603-612.
|
[38] |
BRASSELL S C, EGLINTON G, MAXWELL J R, et al. Natural background of alkanes in the aquatic environment[M]//HUTZINGER O, VAN LELYVELD I H, ZOETEMAN B C J. Aquatic pollutants: transformation and biological effects. New York: Pergamon, 1978: 69-86.
|
[39] |
BLUMER M, THOMAS D W. Phytadienes in zooplankton[J]. Science, 1965, 147(3662): 1148-1149.
|
[40] |
BROOKS P W. Unusual biological marker geochemistry of oils and possible source rocks, offshore Beaufort-Mackenzie Delta, Canada[J]. Organic Geochemistry, 1986, 10(1/3): 401-406.
|
[41] |
VOLMAN J K, BANKS M R, DENWER K, et al. Biomarker composition and depositional setting of Tasmanite oil shale from northern Tasmania, Australia[C]//Proceedings of the 14th International Meeting on Organic Geochemistry. Paris: [s. n. ], 1989.
|
[42] |
MACKENZIE A S, LAMB N A, MAXWELL J R. Steroid hydrocarbons and the thermal history of sediments[J]. Nature, 1982, 295(5846): 223-226.
|
[43] |
FARRIMOND P, BEVAN J C, BISHOP A N. Hopanoid hydrocarbon maturation by an igneous intrusion[J]. Organic Geochemistry, 1996, 25(3/4): 149-164.
|
[44] |
BISHOP A N, LOVE G D, MCAULAY A D, et al. Release of kerogen-bound hopanoids by hydropyrolysis[J]. Organic Geochemistry, 1998, 29(4): 989-1001.
|
[45] |
CLARK J P, PHILP R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta[J]. Bulletin of Canadian Petroleum Geology, 1989, 37(4): 401-416.
|
[46] |
EKWEOZOR C M, STRAUSZ O P. Tricyclic terpanes in the Athabasca oil sands: their geochemistry[M]//BJORØY M. Advances in Organic Geochemistry 1981. New York: Wiley, 1983: 746-766.
|
[47] |
TAO Shizhen, WANG Chuanyuan, DU Jianguo, et al. Geoche-mical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467.
|
[48] |
GRANTHAM P J. The occurence of unusual C27 and C29 sterane predominances in two types of Oman crude oil[J]. Organic Geochemistry, 1986, 9(1): 1-10.
|
[49] |
MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268.
|
[50] |
COX H C, DE LEEUW J W, SCHENCK P A, et al. Bicadinane, a C30 pentacyclic isoprenoid hydrocarbon found in crude oil[J]. Nature, 1986, 319(6051): 316-318.
|
[51] |
SEIFERT W K, MOLDOWAN J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290.
|
[52] |
HUANG Baojia, XIAO Xianming, ZHANG Mingqiang. Geoche-mistry, grouping and origins of crude oils in the western Pearl River Mouth Basin, offshore South China Sea[J]. Organic Geochemistry, 2003, 34(7): 993-1008.
|
[53] |
HU Yue, HAO Fang, ZHU Junzhang, et al. Origin and occurrence of crude oils in the Zhu1 sub-basin, Pearl River Mouth Basin, China[J]. Journal of Asian Earth Sciences, 2015, 97: 24-37.
|
[54] |
BJORØY M, HALL P B, HUSTAD E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/3): 89-105.
|
[55] |
MONSON K D, HAYES J M. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionation in lipid synthesis as evidence for peroxisomal regulation[J]. Journal of Biological Chemistry, 1982, 257(10): 5568-5575.
|
[56] |
MURRAY A P, SUMMONS R E, BOREHAM C J, et al. Biomarker and n-alkane isotope profiles for Tertiary oils: relationship to source rock depositional setting[J]. Organic Geochemistry, 1994, 22(3/5): 521-542, IN5-IN6.
|
[57] |
SUMMONS R E, GROSJEAN E, LOVE G D, et al. Carbon and hydrogen isotopic analysis of hydrocarbons from the South Oman Salt Basin[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A625-A625.
|
[58] |
张向涛, 朱俊章, 熊万林, 等. 番禺4洼文昌组烃源岩生物标志化合物特征与油源判识[J]. 中国海上油气, 2020, 32(4): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004002.htm
ZHANG Xiangtao, ZHU Junzhang, XIONG Wanlin, et al. Biomarker characteristics and oil-source discrimination of source rocks in Wenchang Formation of Panyu 4 sag[J]. China Offshore Oil and Gas, 2020, 32(4): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004002.htm
|
[59] |
李友川, 米立军, 张功成, 等. 南海北部深水区烃源岩形成和分布研究[J]. 沉积学报, 2011, 29(5): 970-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201105018.htm
LI Youchuan, MI Lijun, ZHANG Gongcheng, et al. The formation and distribution of source rocks for deep water area in the northern of South China Sea[J]. Acta Sedimentologica Sinica, 2011, 29(5): 970-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201105018.htm
|
[60] |
GOERICKE R, MONTOYA J P, FRY B. Physiology of isotopic fractionation in algae and cyanobacteria[M]//LAJTHA K, MICHENER R H. Stable isotopes in ecology and environmental science. Oxford: Blackwell Scientific Publications, 1994: 187-221.
|
[61] |
GONÇALVES F T T. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin, Brazil: paleolimnological inferences and source rock models[J]. Organic Geochemistry, 2002, 33(1): 67-80.
|