Volume 44 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
LI Shanshan, BAI Bin, YAN Gang, XU Yaohui, LIU Yan. Maturity indication of 17α(H)-diahopane in expelled and retained oils from artificial maturation experiments of mud shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 887-895. doi: 10.11781/sysydz202205887
Citation: LI Shanshan, BAI Bin, YAN Gang, XU Yaohui, LIU Yan. Maturity indication of 17α(H)-diahopane in expelled and retained oils from artificial maturation experiments of mud shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 887-895. doi: 10.11781/sysydz202205887

Maturity indication of 17α(H)-diahopane in expelled and retained oils from artificial maturation experiments of mud shale

doi: 10.11781/sysydz202205887
  • Received Date: 2022-02-17
  • Rev Recd Date: 2022-07-13
  • Publish Date: 2022-09-28
  • With the comparable sedimentary organic phase, the relative abundance of rearranged hopanes can be correlated to maturity degree. By the approach of artificial maturation experiments of low-maturity (Ro=0.58%) and organic-rich (TOC=3.87%) mud shale collected from the Ordos Basin, 17α(H)-diahopanes in expelled and retained oils were examined by gas chromatography-mass spectrometry (GC-MS). The thermal evolution characteristics of parameters related to 17α(H)-diahopane were discussed, and the maturity range of these parameters as maturity indicators was proposed, combined with the random mean vitrinite reflectance (Ro) of maturated rock samples of each step of pyrolysis. Results show that the parameters of C29*/(C29*+C29H) and C30*/(C30*+C30H) have similar three-stage variations. As experimental temperature increased, the values of the two parameters decreased firstly, then increased and finally decreased again, indicating that they may be good indicators for oil-source correlation. Before 325 ℃, i.e. Ro < 1.01%, both parameters showed insignificant changes. However, they both showed an obvious upward trend with increasing temperature from 325 to 385 ℃, indicating that they were valid indicators for maturity from the moderate to the early stages of high maturity (i.e. 1.01% < Ro < 1.48%).

     

  • loading
  • [1]
    MOLDOWAN J M, FAGO F J, CARLSON R M K, et al. Rearranged hopanes in sediments and petroleum[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3333-3353. doi: 10.1016/0016-7037(91)90492-N
    [2]
    盛国英, 卢鸿, 廖晶, 等. 地质体中藿烷类新化合物研究进展[J]. 地球化学, 2019, 48(5): 421-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905001.htm

    SHENG Guoying, LU Hong, LIAO Jing, et al. Advances on novel hopanoids present in geological bodies[J]. Geochimica, 2019, 48(5): 421-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905001.htm
    [3]
    SMITH G W. The crystal and molecular structure of 22, 29, 30-trisnorhopane Ⅱ, C27H46[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1975, B31(2): 522-526.
    [4]
    KILLOPS S D, HOWELL V J. Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin[J]. Chemical Geology, 1991, 91(1): 65-79. doi: 10.1016/0009-2541(91)90016-K
    [5]
    NYTOFT H P, LUTNÆS B F, JOHANSEN J E. 28-Nor-sper-gulanes, a novel series of rearranged hopanes[J]. Organic Geochemistry, 2006, 37(7): 772-786. doi: 10.1016/j.orggeochem.2006.03.005
    [6]
    NYTOFT H P, LUND K, JØRGENSEN T K C, et al. Identification of an early-eluting rearranged hopane series. Synthesis from hop-17(21)-enes and detection of intermediates in sediments[C]//Proceedings of the 23rd International Meeting on Organic Geochemistry. Torquay, 2007: 9-14.
    [7]
    ARMANIOS C, ALEXANDER R, KAGI R I. High diahopane and neohopane abundances in a biodegraded crude oil from the Barrow sub-basin of western Australia[J]. Organic Geochemistry, 1992, 18(5): 641-645. doi: 10.1016/0146-6380(92)90089-G
    [8]
    TELNAES N, ISAKSEN G H, FARRIMOND P. Unusual triterpane distributions in lacustrine oils[J]. Organic Geochemistry, 1992, 18(6): 785-789. doi: 10.1016/0146-6380(92)90047-2
    [9]
    FARRIMOND P, TELNÆS N. Three series of rearranged hopanes in Toarcian sediments (northern Italy)[J]. Organic Geochemistry, 1996, 25(3/4): 165-177.
    [10]
    肖中尧, 黄光辉, 卢玉红, 等. 库车坳陷却勒1井原油的重排藿烷系列及油源对比[J]. 石油勘探与开发, 2004, 31(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200402008.htm

    XIAO Zhongyao, HUANG Guanghui, LU Yuhong, et al. Rearranged hopanes in oils from the Quele 1 well, Tarim Basin, and the significance for oil correlation[J]. Petroleum Exploration and Development, 2004, 31(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200402008.htm
    [11]
    ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago[J]. Science in China Series D: Earth Sciences, 2007, 50(4): 527-535. doi: 10.1007/s11430-007-0012-1
    [12]
    LI Meijun, WANG Tieguan, LIU Ju, et al. Biomarker 17α(H)-diahopane: a geochemical tool to study the petroleum system of a Tertiary lacustrine basin, northern South China Sea[J]. Applied Geochemistry, 2009, 24(1): 172-183. doi: 10.1016/j.apgeochem.2008.09.016
    [13]
    张敏. 地质体中高丰度重排藿烷类化合物的成因研究现状与展望[J]. 石油天然气学报, 2013, 35(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201309001.htm

    ZHANG Min. Research and prospects of genesis of high abundant rearranged hopanes in geological bodies[J]. Journal of Oil and Gas Technology, 2013, 35(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201309001.htm
    [14]
    JIANG Lian, ZHANG Min. Geochemical characteristics and significances of rearranged hopanes in hydrocarbon source rocks, Songliao Basin, NE China[J]. Journal of Petroleum Science and Engineering, 2015, 131: 138-149. doi: 10.1016/j.petrol.2015.04.035
    [15]
    YANG Weiwei, LIU Guangdi, FENG Yuan. Geochemical significance of 17α(H)-diahopane and its application in oil-source correlation of Yanchang Formation in Longdong area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2016, 71: 238-249. doi: 10.1016/j.marpetgeo.2015.10.016
    [16]
    VOLKMAN J K, ALEXANDER R, KAGI R I, et al. A geochemical reconstruction of oil generation in the Barrow Sub-basin of western Australia[J]. Geochimica et Cosmochimica Acta, 1983, 47(12): 2091-2105. doi: 10.1016/0016-7037(83)90034-0
    [17]
    PHILP R P, GILBERT T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1/3): 73-84.
    [18]
    ROHMER M, OURISSON G. Unsaturated bacteriohopanepolyols from Acetobacter aceti ssp. xylinum[J]. Journal of Chemical Research Synopses (Print), 1986(10): 356-357.
    [19]
    TALBOT H M, ROHMER M, FARRIMOND P. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectro-metry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(10): 1613-1622. doi: 10.1002/rcm.2997
    [20]
    SEIFERT W K, MOLDOWAN J M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils[J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 77-95. doi: 10.1016/0016-7037(78)90219-3
    [21]
    LU Xiaolin, LI Meijun, WANG Xiaojuan, et al. Distribution and geochemical significance of rearranged hopanes in Jurassic source rocks and related oils in the center of the Sichuan Basin, China[J]. ACS Omega, 2021, 6(21): 13588-13600. doi: 10.1021/acsomega.1c00252
    [22]
    张敏, 李谨, 陈菊林. 热力作用对烃源岩中重排藿烷类化合物形成的作用[J]. 沉积学报, 2018, 36(5): 1033-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201805017.htm

    ZHANG Min, LI Jin, CHEN Julin. Thermal effect on the distribution of rearranged hopanes in hydrocarbon source rocks[J]. Acta Sedimentologica Sinica, 2018, 36(5): 1033-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201805017.htm
    [23]
    JIANG Lian, GEORGE S C, ZHANG Min. The occurrence and distribution of rearranged hopanes in crude oils from the Lishu Depression, Songliao Basin, China[J]. Organic Geochemistry, 2018, 115: 205-219. doi: 10.1016/j.orggeochem.2017.11.007
    [24]
    XIAO Hong, LI Meijun, WANG Wenqiang, et al. Identification, distribution and geochemical significance of four rearranged hopane series in crude oil[J]. Organic Geochemistry, 2019, 138: 103929. doi: 10.1016/j.orggeochem.2019.103929
    [25]
    WANG Yaoping, ZHAN Xin, GAO Yuan, et al. Geochemical signatures and controlling factors of rearranged hopanes in source rocks and oils from representative basins of China[J]. ACS Omega, 2020, 5(46): 30160-30167. doi: 10.1021/acsomega.0c04615
    [26]
    KOLACZKOWSKA E, SLOUGUI N E, WATT D S, et al. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations[J]. Organic Geochemistry, 1990, 16(4/6): 1033-1038.
    [27]
    王春江, 傅家谟, 盛国英, 等. 18α(H)-新藿烷及17α(H)-重排藿烷类化合物的地球化学属性与应用[J]. 科学通报, 2000, 45(13): 1366-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200013002.htm

    WANG Chunjiang, FU Jiamo, SHENG Guoying, et al. Geochemical characteristics and applications of 18α(H)-neohopanes and l7α(H)-diahopanes[J]. Chinese Science Bulletin, 2000, 45(19): 1742-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200013002.htm
    [28]
    陈菊林, 张敏. 烃源岩热模拟实验中重排藿烷类化合物变化特征及其意义[J]. 石油实验地质, 2016, 38(5): 672-678. doi: 10.11781/sysydz201605672

    CHEN Julin, ZHANG Min. Features and significance of rearranged hopanes in pyrolyzates of hydrocarbon source rocks[J]. Petroleum Geology & Experiment, 2016, 38(5): 672-678. doi: 10.11781/sysydz201605672
    [29]
    陈菊林, 张敏. 原油热模拟实验中重排藿烷类变化特征及其意义[J]. 现代地质, 2016, 30(4): 871-879. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604016.htm

    CHEN Julin, ZHANG Min. Rearranged hopanes compositions in pyrolysis experiment of crude oil and geochemical significance[J]. Geoscience, 2016, 30(4): 871-879. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604016.htm
    [30]
    黄振凯, 刘全有, 黎茂稳, 等. 鄂尔多斯盆地长7段泥页岩层系排烃效率及其含油性[J]. 石油与天然气地质, 2018, 39(3): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803009.htm

    HUANG Zhenkai, LIU Quanyou, LI Maowen, et al. Hydrocarbon expulsion efficiency and oil-bearing property of the shale system in Chang 7 Member, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803009.htm
    [31]
    黄彦杰, 耿继坤, 白玉彬, 等. 鄂尔多斯盆地富县地区延长组长6、长7段原油地球化学特征及油源对比[J]. 石油实验地质, 2020, 42(2): 281-288. doi: 10.11781/sysydz202002281

    HUANG Yanjie, GENG Jikun, BAI Yubin, et al. Geochemical characteristics and oil-source correlation of crude oils in 6th and 7th members of Yanchang Formation, Fuxian area, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 281-288. doi: 10.11781/sysydz202002281
    [32]
    付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698
    [33]
    董姜畅, 王爱国, 樊志强, 等. 鄂尔多斯盆地中部延长组长7段致密储层成因及控制因素[J]. 断块油气田, 2021, 28(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104004.htm

    DONG Jiangchang, WANG Aiguo, FAN Zhiqiang, et al. Origin and dominated factors of Chang 7 Member tight reservoirs in Yanchang formation, central Ordos Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104004.htm
    [34]
    李志明, 郑伦举, 马中良, 等. 烃源岩有限空间油气生排模拟及其意义[J]. 石油实验地质, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447

    LI Zhiming, ZHENG Lunju, MA Zhongliang, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J]. Petroleum Geology & Experiment, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447
    [35]
    马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm

    MA Zhongliang, ZHENG Lunju, LI Zhiming. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm
    [36]
    LI Honglei, JIANG Lian, CHEN Xiaohui, et al. Identification of the four rearranged hopane series in geological bodies and their geochemical significances[J]. Chinese Journal of Geochemistry, 2015, 34(4): 550-557.
    [37]
    肖洪, 王铁冠, 李美俊. 沉积物和原油中重排藿烷的生物来源和成因机制[J/OL]. 地球科学, 2022: 1-25[2022-07-16]. http://kns.cnki.net/kcms/detail/42.1874.P.20220110.0946.004.html.

    XIAO Hong, WANG Tieguan, LI Meijun. Discussion on the biological origin and formation mechanism of rearranged hopanes in sediments and crude oils[J/OL]. Earth Science, 2022: 1-25[2022-07-16]. http://kns.cnki.net/kcms/detail/42.1874.P.20220110.0946.004.html.
    [38]
    何大祥, 唐友军, 郑彬, 等. 生排烃热模拟中页岩生物标志化合物的变化及其地质意义[J]. 断块油气田, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm

    HE Daxiang, TANG Youjun, ZHENG Bin, et al. Changes of shale biomarkers in thermal simulation of hydrocarbon generation and expulsion and its geological significance[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm
    [39]
    张文正, 杨华, 候林慧, 等. 鄂尔多斯盆地延长组不同烃源岩17α(H)-重排藿烷的分布及其地质意义[J]. 中国科学(D辑: 地球科学), 2009, 39(10): 1438-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200910011.htm

    ZHANG Wenzheng, YANG Hua, HOU Linhui, et al. Distribution and geological significance of 17α(H)-diahopanes from different hydrocarbon source rocks of Yanchang Formation in Ordos Basin[J]. Science in China(Series D: Earth Sciences), 2009, 52(7): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200910011.htm
    [40]
    何川, 郑伦举, 王强, 等. 烃源岩生排烃模拟实验技术现状、应用与发展方向[J]. 石油实验地质, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862

    HE Chuan, ZHENG Lunju, WANG Qiang, et al. Experimental develop-ment and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862
    [41]
    龙祖烈, 石创, 朱俊章, 等. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507

    LONG Zulie, SHI Chuang, ZHU Junzhang, et al. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
    [42]
    JIANG Lian, ZHANG Min, LI Hongbo, et al. Characteristics of rearranged hopanes of hydrocarbon source rocks in saline sedimentary environment: a case study of the Songliao Basin[J]. Acta Geologica Sinica-English Edition, 2016, 90(6): 2269-2270.
    [43]
    仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387

    YANG Yunfeng, BAO Fang, BORJIGIN Tenger, et al. Characteristics of organic matter-hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387
    [44]
    李二庭, 向宝力, 李际, 等. 甾烷和藿烷的国产X型分子筛分离制备实验研究[J]. 石油实验地质, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713

    LI Erting, XIANG Baoli, LI Ji, et al. Separation of steranes and hopanes by domestic X-type molecular sieves[J]. Petroleum Geology & Experiment, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713
    [45]
    LOCKHART R S, MEREDITH W, LOVE G D, et al. Release of bound aliphatic biomarkers via hydropyrolysis from type Ⅱ kerogen at high maturity[J]. Organic Geochemistry, 2008, 39(8): 1119-1124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (466) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return