Citation: | WANG Xiang, MA Jinfeng, WANG Feilong, WANG Zhenliang, CHEN Rongtao, YAN Xinyu. Prediction of organic facies of deep source rocks in southwestern part of Bozhong Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1070-1080. doi: 10.11781/sysydz2022061070 |
[1] |
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characte-ristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
|
[2] |
焦方正. 非常规油气之"非常规"再认识[J]. 石油勘探与开发, 2019, 46(5): 803-810. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905002.htm
JIAO Fangzheng. Re-recognition of "unconventional" in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905002.htm
|
[3] |
LAW B E, CURTIS J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11): 1851-1852.
|
[4] |
SOEDER D J. The successful development of gas and oil resources from shales in North America[J]. Journal of Petroleum Science and Engineering, 2018, 163: 399-420. doi: 10.1016/j.petrol.2017.12.084
|
[5] |
ROGERS M A. PD 1(3) application of organic facies concepts to hydrocarbon source rock evaluation[C]//Proceedings of the 10th World Petroleum Congress. Bucharest: WPC, 1979: 23-30.
|
[6] |
JONES R W. Organic facies[M]//BROOKS J, WELTE D. Advances in Petroleum Geochemistry. London: Academic, 1987: 1-89.
|
[7] |
PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation. Part Ⅰ: oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-E
|
[8] |
郝芳, 陈建渝, 孙永传, 等. 有机相研究及其在盆地分析中的应用[J]. 沉积学报, 1994, 12(4): 77-86. doi: 10.14027/j.cnki.cjxb.1994.04.009
HAO Fang, CHEN Jianyu, SUN Yongchuan, et al. Organic facies studies and their use in sedimentary basin analysis[J]. Acta Sedimentologica Sinica, 1994, 12(4): 77-86. doi: 10.14027/j.cnki.cjxb.1994.04.009
|
[9] |
ABDULLAH W H. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard[J]. Marine and Petroleum Geology, 1999, 16(5): 467-481. doi: 10.1016/S0264-8172(98)00086-5
|
[10] |
李君文, 陈洪德, 田景春, 等. 沉积有机相的研究现状及其应用[J]. 沉积与特提斯地质, 2004, 24(2): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200402015.htm
LI Junwen, CHEN Hongde, TIAN Jingchun, et al. Sedimentary organic facies: current research and applications[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(2): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200402015.htm
|
[11] |
姚素平, 毛鹤龄, 金奎励, 等. 准噶尔盆地侏罗系西山窑组沉积有机相研究及烃源岩评价[J]. 中国矿业大学学报, 1997, 26(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD701.016.htm
YAO Suping, MAO Heling, JIN Kuili, et al. Study of sedimentary organic facies and the evaluating of source rock on Xishanyao Formation coal-bearing strata of Jurassic system in Junggar Basin[J]. Journal of China University of Mining & Technology, 1997, 26(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD701.016.htm
|
[12] |
YURCHENKO I A, MOLDOWAN J M, PETERS K E, et al. Source rock heterogeneity and migrated hydrocarbons in the Triassic Shublik Formation and their implication for unconventional resource evaluation in Arctic Alaska[J]. Marine and Petroleum Geology, 2018, 92: 932-952. doi: 10.1016/j.marpetgeo.2018.03.033
|
[13] |
DEAF A S, TAHOUN S S, GENTZIS T, et al. Organic geochemical, palynofacies, and petrographic analyses examining the hydrocarbon potential of the Kharita Formation (Albian) in the Matruh Basin, northwestern Egypt[J]. Marine and Petroleum Geology, 2020, 112: 104087. doi: 10.1016/j.marpetgeo.2019.104087
|
[14] |
RODRIGUEZ N D, PHILP R P. Source rock facies distribution predicted from oil geochemistry in the central Sumatra Basin, Indonesia[J]. AAPG Bulletin, 2015, 99(11): 2005-2022. doi: 10.1306/06191514050
|
[15] |
赵志刚, 王飞宇, 王洪波, 等. 二连盆地赛汉塔拉凹陷烃源岩有机相与烃源灶[J]. 岩性油气藏, 2017, 29(2): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201702004.htm
ZHAO Zhigang, WANG Feiyu, WANG Hongbo, et al. Source kitchen and organic facies of source rocks in Sahantala Sag, Erlian Basin[J]. Lithologic Reservoirs, 2017, 29(2): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201702004.htm
|
[16] |
孙哲, 彭靖淞, 江尚昆, 等. 渤海海域庙西中南洼围区烃源岩有机相与测井评价[J]. 岩性油气藏, 2020, 32(1): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202001011.htm
SUN Zhe, PENG Jingsong, JIANG Shangkun, et al. Organic facies and well logging evaluation of source rocks in centeral-south sag of Miaoxi Depression and its surrounding areas, Bohai Sea[J]. Litho-logic Reservoirs, 2020, 32(1): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202001011.htm
|
[17] |
杨海风, 涂翔, 赵弟江, 等. 渤海湾盆地莱州湾凹陷沙河街组第三、第四段烃源岩有机相特征[J]. 成都理工大学学报(自然科学版), 2021, 48(1): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202101008.htm
YANG Haifeng, TU Xiang, ZHAO Dijiang, et al. Organic facies characteristics of source rocks on the 3rd and 4th member of Shahejie Formation in the southern Laizhouwan Depression, Bohai Bay Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(1): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202101008.htm
|
[18] |
徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
|
[19] |
薛永安, 王奇, 牛成民, 等. 渤海海域渤中凹陷渤中19-6深层潜山凝析气藏的充注成藏过程[J]. 石油与天然气地质, 2020, 41(5): 891-902. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005002.htm
XUE Yongan, WANG Qi, NIU Chengmin, et al. Hydrocarbon charging and accumulation of BZ 19-6 gas condensate field in deep buried hills of Bozhong Depression, Bohai Sea[J]. Oil & Gas Geology, 2020, 41(5): 891-902. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005002.htm
|
[20] |
李慧勇, 牛成民, 许鹏, 等. 渤中13-2大型整装覆盖型潜山油气田的发现及其油气勘探意义[J]. 天然气工业, 2021, 41(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102005.htm
LI Huiyong, NIU Chengmin, XU Peng, et al. Discovery of Bozhong 13-2 archean large monoblock volatile buried hill oilfield and its oil and gas exploration significance[J]. Natural Gas Industry, 2021, 41(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102005.htm
|
[21] |
施和生, 牛成民, 侯明才, 等. 渤中13-2双层结构太古宇潜山成藏条件分析与勘探发现[J]. 中国石油勘探, 2021, 26(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202102002.htm
SHI Hesheng, NIU Chengmin, HOU Mingcai, et al. Analysis of hydrocarbon accumulation conditions of double-layered Archaeozoic buried hill and major discovery of Bozhong 13-2 Oil and Gasfield, Bohai Sea area[J]. China Petroleum Exploration, 2021, 26(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202102002.htm
|
[22] |
PASSEY Q R, CREANEY S, KULLA J B, et al. A practical model for organic richness from porosity and resistivity logs1[J]. AAPG Bulletin, 1990, 74(12): 1777-1794.
|
[23] |
刘超, 卢双舫, 薛海涛. 变系数ΔlogR方法及其在泥页岩有机质评价中的应用[J]. 地球物理学进展, 2014, 29(1): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201401044.htm
LIU Chao, LU Shuangfang, XUE Haitao. Variable-coefficient ΔlogR model and its application in shale organic evaluation[J]. Progress in Geophysics, 2014, 29(1): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201401044.htm
|
[24] |
王祥, 马劲风, 王德英, 等. 渤中凹陷西南部烃源岩TOC含量预测[J]. 石油地球物理勘探, 2020, 55(6): 1330-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202006018.htm
WANG Xiang, MA Jinfeng, WANG Deying, et al. Prediction of TOC content in source rocks in southwestern Bozhong Sag[J]. Oil Geophysical Prospecting, 2020, 55(6): 1330-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202006018.htm
|
[25] |
杜江民, 张小莉, 钟高润, 等. 致密油烃源岩有机碳含量测井评价方法优选及应用: 以鄂尔多斯盆地延长组长7段烃源岩为例[J]. 地球物理学进展, 2016, 31(6): 2526-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606023.htm
DU Jiangmin, ZHANG Xiaoli, ZHONG Gaorun, et al. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil: illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin[J]. Progress in Geophysics, 2016, 31(6): 2526-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606023.htm
|
[26] |
HUANG Zehui, WILLIAMSON M A. Artificial neural network modelling as an aid to source rock characterization[J]. Marine and Petroleum Geology, 1996, 13(2): 277-290.
|
[27] |
KAMALI M R, MIRSHADY A A. Total organic carbon content determined from well logs using ΔlogR and neuro fuzzy techniques[J]. Journal of Petroleum Science and Engineering, 2004, 45(3/4): 141-148.
|
[28] |
BOLANDI V, KADKHODAIE-ILKHCHI A, ALIZADEH B, et al. Source rock characterization of the Albian Kazhdumi Formation by integrating well logs and geochemical data in the Azadegan Oilfield, Abadan Plain, SW Iran[J]. Journal of Petroleum Science and Engineering, 2015, 133: 167-176.
|
[29] |
WANG Huijun, WU Wei, CHEN Tao, et al. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs[J]. Journal of Petroleum Science and Engineering, 2019, 176: 664-678.
|
[30] |
SHALABY M R, JUMAT N, LAI D, et al. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt[J]. Journal of Petroleum Science and Engineering, 2019, 176: 369-380.
|
[31] |
赵峦啸, 刘金水, 姚云霞, 等. 基于随机森林算法的陆相沉积烃源岩定量地震刻画: 以东海盆地长江坳陷为例[J]. 地球物理学报, 2021, 64(2): 700-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202102025.htm
ZHAO Luanxiao, LIU Jinshui, YAO Yunxia, et al. Quantitative seismic characterization of source rocks in lacustrine depositional setting using the Random Forest method: an example from the Changjiang Sag in East China Sea Basin[J]. Chinese Journal of Geophysics, 2021, 64(2): 700-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202102025.htm
|
[32] |
胡慧婷, 苏瑞, 刘超, 等. 广义ΔLgR技术预测陆相深层烃源岩有机碳含量方法及其应用[J]. 天然气地球科学, 2016, 27(1): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601018.htm
HU Huiting, SU Rui, LIU Chao, et al. The method and application of using generalized-ΔLgR technology to predict the organic carbon content of continental deep source rocks[J]. Natural Gas Geoscience, 2016, 27(1): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601018.htm
|
[33] |
边雷博, 柳广弟, 孙明亮, 等. 优化的ΔLogR技术及其在中—深层烃源岩总有机碳含量预测中的应用[J]. 油气地质与采收率, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm
BIAN Leibo, LIU Guangdi, SUN Mingliang, et al. Improved ΔlogR technique and its application to predicting total organic carbon of source rocks with middle and deep burial depth[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm
|
[34] |
赵彦德, 刘洛夫, 王旭东, 等. 渤海湾盆地南堡凹陷古近系烃源岩有机相特征[J]. 中国石油大学学报(自然科学版), 2009, 33(5): 23-29.
ZHAO Yande, LIU Luofu, WANG Xudong, et al. Characteristics of organic facies of Eogene hydrocarbon source rocks in Nanpu Sag, Bohai Bay Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(5): 23-29.
|
[35] |
崔永谦, 王飞宇, 张传宝, 等. 渤海湾盆地冀中坳陷霸县凹陷深层沙四段源岩有机相评价及意义[J]. 天然气地球科学, 2021, 32(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101005.htm
CUI Yongqian, WANG Feiyu, ZHANG Chuanbao, et al. Orgao-faices evolution of deep Es4 source rock in Baxian Sag, Jizhong Depression of Bohai Bay Basin and its significance[J]. Natural Gas Geoscience, 2021, 32(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101005.htm
|
[36] |
侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
|
[37] |
薛永安, 王飞龙, 汤国民, 等. 渤海海域页岩油气地质条件与勘探前景[J]. 石油与天然气地质, 2020, 41(4): 696-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004005.htm
XUE Yongan, WANG Feilong, TANG Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4): 696-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004005.htm
|
[38] |
ZHU Linqi, ZHANG Chaomo, ZHANG Zhansong, et al. An improved method for evaluating the TOC content of a shale formation using the dual-difference ΔlogR method[J]. Marine and Petroleum Geology, 2019, 102: 800-816.
|
[39] |
严鸿, 管燕萍. BP神经网络隐层单元数的确定方法及实例[J]. 控制工程, 2009, 16(S2): 100-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF2009S2030.htm
YAN Hong, GUAN Yanping. Method to determine the quantity of internal nodes of back propagation neural networks and its demonstration[J]. Control Engineering of China, 2009, 16(S2): 100-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF2009S2030.htm
|
[40] |
季少聪, 杨香华, 朱红涛, 等. 下刚果盆地A区块Madingo组烃源岩TOC含量的地球物理定量预测[J]. 石油地球物理勘探, 2018, 53(2): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201802020.htm
JI Shaocong, YANG Xianghua, ZHU Hongtao, et al. Geophysical quantitative prediction of TOC content in source rocks of Madingo Formation in block A, Lower Congo Basin[J]. Oil Geophysical Prospecting, 2018, 53(2): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201802020.htm
|