Volume 44 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
WANG Ziqiang, GE Hongkui, GUO Huiying, ZHOU Hao, ZHANG Yuankai. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092
Citation: WANG Ziqiang, GE Hongkui, GUO Huiying, ZHOU Hao, ZHANG Yuankai. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092

Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures

doi: 10.11781/sysydz2022061092
  • Received Date: 2022-01-04
  • Rev Recd Date: 2022-10-18
  • Publish Date: 2022-11-28
  • Micro- and nano-scale pore-throat fissure systems were mainly developed in the Jimsar shale oil reservoir of the Junggar Basin with the oil of viscous and difficult to be produced.CO2 huff-and-puff is an important technology to enhance the oil recovery. To understand the mobility law of Jimsar shale oil reservoir under CO2 huff and puff, 45 cores of the Lucaogou Formation in this area were studied in this study.The cores was classified into dolomitic sandstone, doloarenite and lithic sandstone. The overburden porosity of the reservoir is 2.0%-22.7%, and the average value is only 11.0%. The average overburden permeability is 0.01×10-3 μm2, and more than 90% of the samples have permeability lower than 0.1×10-3 μm2. According to physical property classification, 20 rock samples were further selected and 6 key parameters for low-field NMR measurement were optimized. By comparing the experimental data of shale oil mercury injection with those of low-field NMR, the linear relationship between T2 value and pore radius of shale core was established in logarithmic coordinates.The pore radius distribution of shale was obtained quantitatively according to the T2 spectrum. 9 kinds of CO2 huff and puff experiments were carried out under different temperatures and pressures. The analyses of recovery rate, utilization degree and other indicators show that shale oil in small pores(r < 300 nm) is difficult to produce, and the utilization degree of shale oil in medium pores (300 nm < r < 1 000 nm) and large pores(r>1 000 nm) is relatively higher, and increases with the increase of temperature and pressure.

     

  • loading
  • [1]
    张林晔, 李钜源, 李政, 等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6): 700-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406008.htm

    ZHANG Linye, LI Juyuan, LI Zheng, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6): 700-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406008.htm
    [2]
    武晓玲, 高波, 叶欣, 等. 中国东部断陷盆地页岩油成藏条件与勘探潜力[J]. 石油与天然气地质, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm

    WU Xiaoling, GAO Bo, YE Xin, et al. Shale oil accumulation conditions and exploration potential of faulted basins in the east of China[J]. Oil & Gas Geology, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm
    [3]
    MǍNESCU C B, NUÑO G. Quantitative effects of the shale oil revolution[J]. Energy Policy, 2015, 86: 855-866. doi: 10.1016/j.enpol.2015.05.015
    [4]
    HOFFMAN B T. Comparison of various gases for enhanced recovery from shale oil reservoirs[C]//Proceedings of the SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, USA: SPE, 2012.
    [5]
    GAMADI T D, SHENG J J, SOLIMAN M Y, et al. An experimental study of cyclic CO2 injection to improve shale oil recovery[C]// Proceedings of the SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, USA: SPE, 2014.
    [6]
    GAMADI T D, SHENG J J, SOLIMAN M Y. An experimental study of cyclic gas injection to improve shale oil recovery[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA: SPE, 2013.
    [7]
    祝春生, 程林松. 低渗透油藏CO2驱提高原油采收率评价研究[J]. 钻采工艺, 2007, 30(6): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200706022.htm

    ZHU Chunsheng, CHENG Linsong. Research on CO2 flooding in low permeability reservoir[J]. Drilling & Production Technology, 2007, 30(6): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200706022.htm
    [8]
    刘淑霞. 特低渗透油藏CO2驱室内实验研究[J]. 西南石油大学学报(自然科学版), 2011, 33(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201102022.htm

    LIU Shuxia. Research on laboratory experiments of CO2 drive in ultra-low permeability reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201102022.htm
    [9]
    赵明国, 李金珠, 王忠滨. 特低渗透油藏CO2非混相驱油机理研究[J]. 科学技术与工程, 2011, 11(7): 1438-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201107006.htm

    ZHAO Mingguo, LI Jinzhu, WANG Zhongbin. The study on CO2 immiscible mechanism in low permeability reservoir[J]. Science Technology and Engineering, 2011, 11(7): 1438-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201107006.htm
    [10]
    HOLM L W, JOSENDAL V A. Mechanisms of oil displacement by carbon dioxide[J]. Journal of Petroleum Technology, 1974, 26(12): 1427-1438.
    [11]
    HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2[C]// Proceedings of the SPE Unconventional Resources Conference Canada. Calgary, Alberta, Canada: SPE, 2013.
    [12]
    SONG Chengyao, YANG Daoyong. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190: 145-162.
    [13]
    JIN Lu, HAWTHORNE S, SORENSEN J, et al. Advancing CO2 enhanced oil recovery and storage in unconventional oil play: experimental studies on Bakken shales[J]. Applied Energy, 2017, 208: 171-183.
    [14]
    JIN Lu, HAWTHORNE S, SORENSEN J, et al. Extraction of oil from the Bakken shales with supercritical CO2[C]// Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference. Austin, Texas, USA: URTEC, 2017.
    [15]
    JIN Lu, SORENSEN J A, HAWTHORNE S B. Improving oil transportability using CO2 in the Bakken system: a laboratory investigation[C]//Proceedings of the SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2016.
    [16]
    LI Lei, ZHANG Yao, SHENG J J. Effect of the injection pressure on enhancing oil recovery in shale cores during the CO2 Huff-n-Puff process when it is above and below the minimum miscibility pressure[J]. Energy & Fuels, 2017, 31(4): 3856-3867.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (410) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return