Volume 44 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
SUN Yaxiong, ZHANG Tan, DING Wenlong, YAO Wei, ZHANG Chi. Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs: a case study of X block in Wuqi Oil Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105
Citation: SUN Yaxiong, ZHANG Tan, DING Wenlong, YAO Wei, ZHANG Chi. Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs: a case study of X block in Wuqi Oil Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105

Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs: a case study of X block in Wuqi Oil Field, Ordos Basin

doi: 10.11781/sysydz2022061105
  • Received Date: 2021-11-28
  • Rev Recd Date: 2022-09-21
  • Publish Date: 2022-11-28
  • In order to investigate the pore structures of the tight sandstone reservoirs in the 4+5th and 6th members of the Triassic Yanchang Formation (Chang4+5 and Chang6, respectively), and the 9th and 10th members of the Jurassic Yan'an Formation (Yan9 and Yan10, respectively) in the X block of Wuqi Oil Field, Ordos Basin, 12 samples were collected to analyze reservoir properties with the approaches of scanning electron microscope observation, X-ray diffraction and high pressure mercury intrusion. We also quantitatively characterized the pore parameter and fractal dimension of the tight sandstones by the using of digital image analysis and fractal geometry. In addition, we discussed the relationship between fractal dimension and sample properties (porosity, permeability), pore structure parameter (average pore-throat radius, sorting coefficient), pore geometric parameters (dominant pore size, perimeter over area, and pore body-to-throat ratio). The influence of sedimentary facies and diagenetic environment on pore structures were also quantitatively analyzed. Results show that the pore structure fractal dimension ranges from 2.164 to 2.895, with an average value of 2.395. Fractal dimension is negatively correlated to permeability, porosity and average pore-throat radius, and positively related to sorting coefficient. Tight sandstones in the study area generally show properties of low dominant pore size, high perimeter over area, lower body-to-throat ratio, and high dimensions. The fractal dimension is positively related to body-to-throat and perimeter-to-area ratio, and negatively related to pore size. It is indicated that the pore structure of the samples is relatively complex and has strong heterogeneity. Depositional environment affects the compositional maturity and structural maturity of reservoir.

     

  • loading
  • [1]
    丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201507001.htm

    DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201507001.htm
    [2]
    闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm

    YAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm
    [3]
    杜金虎, 何海清, 杨涛, 等. 中国致密油勘探进展及面临的挑战[J]. 中国石油勘探, 2014, 19(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201401001.htm

    DU Jinghu, HE Haiqing, YANG Tao, et al. Progress in China's tight oil exploration and challenges[J]. China Petroleum Exploration, 2014, 19(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201401001.htm
    [4]
    张奎华, 曹忠祥, 王越, 等. 博格达地区中二叠统芦草沟组沉积相及沉积演化[J]. 油气地质与采收率, 2020, 27(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004002.htm

    ZHANG Kuihua, CAO Zhongxiang, WANG Yue, et al. Sedimentary facies and evolution of Middle Permian Lucaogou Formation in Bogda area[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004002.htm
    [5]
    张哲豪, 魏新善, 弓虎军, 等. 鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J]. 油气地质与采收率, 2020, 27(2): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002007.htm

    ZHANG Zhehao, WEI Xinshan, GONG Hujun, et al. Diagenesis characteristics and evolution of porosity of Chang7 tight sandstone reservoir in Dingbian Oilfield, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002007.htm
    [6]
    施砍园, 庞雄奇, 王克, 等. 鄂尔多斯盆地华庆地区致密砂岩油藏成藏条件研究[J]. 特种油气藏, 2021, 28(6): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106003.htm

    SHI Kanyuan, PANG Xiongqi, WANG Ke, et al. Study on accumulation conditions of tight sandstone reservoirs in Huaqing Area, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106003.htm
    [7]
    张全培, 吴文瑞, 刘丽萍, 等. 鄂尔多斯盆地镇北地区延长组超低渗透储层孔隙结构及其分形特征[J]. 油气地质与采收率, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htm

    ZHANG Quanpei, WU Wenrui, LIU Liping, et al. Pore structure and fractal characteristics of ultra-low permeability reservoirs in Yanchang Formation in Zhenbei area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202003004.htm
    [8]
    PAYNE S S, WILD P, LUBBE R. An integrated solution to rock physics modelling in fractured carbonate reservoirs[C]//Second EAGE Workshop on Rock Physics. Muscat: EAGE, 2010: 4453.
    [9]
    WANG Kewen, SUN Jianmeng, GUAN Jiteng, et al. Percolation network modeling of electrical properties of reservoir rock[J]. Applied Geophysics, 2005, 2(4): 223-229.
    [10]
    HE Chengzu, HUA Mingqi. Fractal geometry description of reservoir pore structure[J]. Oil & Gas Geology, 1998, 19(1): 15-23.
    [11]
    HE Jianhua, DING Wenlong, LI Ang, et al. Quantitative microporosity evaluation using mercury injection and digital image analysis in tight carbonate rocks: a case study from the Ordovician in the Tazhong Palaeouplift, Tarim Basin, NW China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 627-644.
    [12]
    DATHE A, THULLNER M. The relationship between fractal properties of solid matrix and pore space in porous media[J]. Geoderma, 2005, 129(3/4): 279-290.
    [13]
    曹路. 基于数字图形软件技术的工程岩土材料分析系统研究与实现[D]. 成都: 电子科技大学, 2014.

    CAO Lu. Based on the analysis of digital graphics software technology in geotechnical engineering materials research and implementation of system[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [14]
    HOUBEN M E, DESBOIS G, URAI J L. Pore morphology and distribution in the Shaly facies of Opalinus clay (Mont Terri, Switzerland): insights from representative 2D BIB-SEM investigations on mm to nm scale[J]. Applied Clay Science, 2013, 71: 82-97.
    [15]
    GONZALEZ R C, WOODS R E, EDDINS S L. Digital image processing using MATLAB[M]. Beijing: Publishing House of Electronics Industry, 2013.
    [16]
    NORBISRATH J H, EBERLI G P, LAURICH B, et al. Electrical and fluid flow properties of carbonate microporosity types from multiscale digital image analysis and mercury injection[J]. AAPG Bulletin, 2015, 99(11): 2077-2098.
    [17]
    WEGER R J, EBERLI G P, BAECHLE G T, et al. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J]. AAPG Bulletin, 2009, 93(10): 1297-1317.
    [18]
    JACKSON P D, JARRARD R D, PIGRAM C J, et al. Resistivity/porosity/velocity relationships from downhole logs: an aid for evaluating pore morphology[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 133: 661-686.
    [19]
    SWANSON B F. Microporosity in reservoir rocks: its measurement and influence on electrical resistivity[J]. The Log Analyst, 1985, 26(6): 42-52.
    [20]
    任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006.

    REN Xiaojuan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xi'an: Northwest University, 2006.
    [21]
    孙雨, 于海涛, 马世忠, 等. 致密砂岩储层物性特征及其控制因素: 以松辽盆地大安地区白垩系泉头组四段为例[J]. 中国矿业大学学报, 2017, 46(4): 809-819. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704015.htm

    SUN Yu, YU Haitao, MA Shizhong, et al. Physical property of tight sandstone reservoir and its controlling factors: a case study of the fourth member of Cretaceous Quantou Formation in Da' an area of Songliao Basin[J]. Journal of China University of Mining & Technology, 2017, 46(4): 809-819. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704015.htm
    [22]
    解伟. 西峰庆阳区长8储层微观孔隙结构及渗流特征研究[D]. 西安: 西北大学, 2008.

    XIE Wei. A study on micro-pore structure and infiltrating mechanism of Chang-8 reservoir in Qingyang area Xifeng Oilfield[D]. Xi'an: Northwest University, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (526) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return