Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
KANG Shujuan, YANG Yunfeng, WANG Huajian, JIANG Wenbin, HE Kun, LIU Ranran. Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089
Citation: KANG Shujuan, YANG Yunfeng, WANG Huajian, JIANG Wenbin, HE Kun, LIU Ranran. Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089

Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin

doi: 10.11781/sysydz202301089
  • Received Date: 2022-04-13
  • Rev Recd Date: 2022-11-14
  • Publish Date: 2023-01-28
  • The lacustrine dark shale deposits of the Upper Cretaceous Qingshankou Formation in the Central Depression of Songliao Basin contain a considerable amount of shale oil resources, among which the shale oil exploration of the Qingshankou Formation in the Qijia-Gulong Sag has made a major breakthrough. In this paper, methods of sealed thermal release, combined with organic solvent extract and Rock-Eval, has been used for the comprehensive evaluation of shale oil-bearing capacity of the Qingshankou Formation. The TOC of shales from the Qingshankou Formation in the study area range from 1.48% to 6.97% with an average value of 3.40%. The values of Tmax range from 440 ℃ to 453 ℃ with an average of 448 ℃ for the samples after extraction, and the production index ranges from 0.28 to 0.67, indicating a middle stage of oil generation window. The shale oil contents of the studied samples range from 4.00 mg/g to 19.49 mg/g with an average value of 13.74 mg/g. The contents of free oil range from 3.41 mg/g to 13.63 mg/g with an average value of 8.70 mg/g; while the content of adsorbed oil ranges from 0.60 mg/g to 9.43 mg/g with an average value of 5.04 mg/g. Free oil is made up of restricted oil and movable oil in the proportion of 1∶1. The content of restricted oil of the studied samples ranges from 1.81 mg/g to 8.49 mg/g with an average of 4.15 mg/g; while the content of movable oil ranges from 1.36 mg/g to 11.05 mg/g with an average of 4.55 mg/g. The movable oil resource is 12 kg/m3 based on the average content of mobile oil, which reveals good resource potential of movable shale oil in the first member of Qing-shankou Formation of the Sanzhao Sag.

     

  • loading
  • [1]
    王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606003.htm

    WANG Hongjun, MA Feng, TONG Xiaoguang, et al. Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606003.htm
    [2]
    宋岩, 李卓, 姜振学, 等. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017, 44(4): 638-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704020.htm

    SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development, 2017, 44(4): 638-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704020.htm
    [3]
    罗安湘, 喻建, 刘显阳, 等. 鄂尔多斯盆地中生界石油勘探实践及主要认识[J]. 新疆石油地质, 2022, 43(3): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202203001.htm

    LUO Anxiang, YU Jian, LIU Xianyang, et al. Practices and cognitions of petroleum exploration in Mesozoic, Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(3): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202203001.htm
    [4]
    刘金, 王剑, 张宝真, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组微—纳米孔隙页岩油原位赋存特征[J]. 石油实验地质, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270

    LIU Jin, WANG Jian, ZHANG Baozhen, et al. In situ occurrence of shale oil in micro-nano pores in Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270
    [5]
    赵俊峰, 刘池洋, 张东东, 等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长7段剖面及其油气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 233-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201020.htm

    ZHAO Junfeng, LIU Chiyang, ZHANG Dongdong, et al. Description and its hydrocarbon geological implications of outcrop sections of Triassic Chang-7 Member in southern Ordos Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 233-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201020.htm
    [6]
    夏赟, 张丽萍, 褚浩元, 等. 吉木萨尔页岩油"下甜点"低成本技术[J]. 油气藏评价与开发, 2021, 11(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104009.htm

    XIA Yun, ZHANG Liping, CHU Haoyuan, et al. Low-cost technology of Jimsar shale oil: a case study of lower "sweet spot"[J]. Reservoir Evaluation and Development, 2021, 11(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104009.htm
    [7]
    王剑, 周路, 靳军, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层孔隙结构、烃类赋存及其与可动性关系[J]. 石油实验地质, 2021, 43(6): 941-948. doi: 10.11781/sysydz202106941

    WANG Jian, ZHOU Lu, JIN Jun, et al. Pore structure, hydrocarbon occurrence and their relationship with shale oil production in Lucaogou Formation of Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 941-948. doi: 10.11781/sysydz202106941
    [8]
    李志明, 孙中良, 黎茂稳, 等. 陆相基质型页岩油甜点区成熟度界限探讨: 以渤海湾盆地东营凹陷沙三下—沙四上亚段为例[J]. 石油实验地质, 2021, 43(5): 767-775. doi: 10.11781/sysydz202105767

    LI Zhiming, SUN Zhongliang, LI Maowen, et al. Maturity limit of sweet spot area for continental matrix type shale oil: a case study of lower Es3 and upper Es4 sub-members in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 767-775. doi: 10.11781/sysydz202105767
    [9]
    杨智峰, 唐勇, 郭旭光, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征与影响因素[J]. 石油实验地质, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784

    YANG Zhifeng, TANG Yong, GUO Xuguang, et al. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784
    [10]
    张才利, 刘新社, 杨亚娟, 等. 鄂尔多斯盆地长庆油田油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103002.htm

    ZHANG Caili, LIU Xinshe, YANG Yajuan, et al. Petroleum exploration history and enlightenment of Changqing Oilfield in Ordos Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103002.htm
    [11]
    卢振东, 刘成林, 曾晓祥, 等. 页岩油资源规模分布模型及敏感性研究[J]. 石油实验地质, 2022, 44(4): 730-738. doi: 10.11781/sysydz202204730

    LU Zhendong, LIU Chenglin, ZENG Xiaoxiang, et al. Shale oil size distribution models and their sensitivities[J]. Petroleum Geology & Experiment, 2022, 44(4): 730-738. doi: 10.11781/sysydz202204730
    [12]
    张冰. 松辽盆地北部页岩储层地质评价及关键技术研究[J]. 特种油气藏, 2022, 29(5): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202205010.htm

    ZHANG Bing. Geological evaluation and key technology of shale reservoirs in northern Songliao Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202205010.htm
    [13]
    崔宝文, 赵莹, 张革, 等. 松辽盆地古龙页岩油地质储量估算方法及其应用[J]. 大庆石油地质与开发, 2022, 41(3): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202203002.htm

    CUI Baowen, ZHAO Ying, ZHANG Ge, et al. Estimation method and application for OOIP of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202203002.htm
    [14]
    HU Tao, PANG Xiongqi, JIANG Fujie, et al. Movable oil content evaluation of lacustrine organic-rich shales: methods and a novel quantitative evaluation model[J]. Earth-Science Reviews, 2021, 214: 103545. http://www.sciencedirect.com/science/article/pii/S0012825221000441
    [15]
    蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [16]
    LI Maowen, CHEN Zhuoheng, MA Xiaoxiao et al. A numerical method for calculating total oil yield using a single routine Rock-Eval program: a case study of the Eocene Shahejie Formation in Dongying Depression, Bohai Bay Basin, China[J]. International Journal of Coal Geology, 2018, 191: 49-65. http://www.sciencedirect.com/science/article/pii/S0166516218300594
    [17]
    ROMERO-SARMIENTO M F. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks[J]. AAPG Bulletin, 2019, 103(9): 2031-2043. http://www.researchgate.net/publication/333089221_A_quick_analytical_approach_to_estimate_both_free_versus_sorbed_hydrocarbon_contents_in_liquid_rich_source_rocks
    [18]
    LI Jinbu, WANG Min, CHEN Zhuoheng, et al. Evaluating the total oil yield using a single routine Rock-Eval experiment on as-received shales[J]. Journal of Analytical and Applied Pyrolysis, 2019, 144: 104707. http://www.sciencedirect.com/science/article/pii/S0165237019305637
    [19]
    JARVIE D M. Shale resource systems for oil and gas: part 2—shale-oil resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century, AAPG memoir 97, 2012: 89-119.
    [20]
    DELVEAUX D, MARTIN H, LEPLAT P, et al. Comparative Rock-Eval pyrolysis as an improved tool for sedimentary organic matter analysis[J]. Organic Geochemistry, 1990, 16(4/6): 1221-1229. http://www.researchgate.net/profile/Damien_Delvaux/publication/240412036_Comparative_Rock-Eval_pyrolysis_as_an_improved_tool_for_sedimentary_organic_matter_analysis/links/00b4953ac5fdbde99c000000.pdf
    [21]
    MICHAEL G E, PACKWOOD J, HOLBA A. Determination of in-situ hydrocarbon volumes in liquid rich shale plays[C]//Unconventional Resources Technology Conference. Denver, Colorado, USA: SEG, 2013: 2037-2043.
    [22]
    LI Maowen, MA Xiaoxiao, LI Zhiming, et al. Emerging shale oil plays in hypersaline lacustrine Qianjiang Formation, Jianghan Basin, Central China[C]//Unconventional Resources Technology Conference. Houston, Texas, USA: SEG, 2018: 108-125.
    [23]
    JARVIE D, BAKER D. Application of the Rock-Eval Ⅲ oil show analyzer to the study of gaseous hydrocarbons in an Oklahoma gas well[C]//187th American Chemical Society National Meeting. St. Louis, Missouri: ACS, 1984.
    [24]
    王岚, 周海燕, 商斐, 等. 松辽盆地北部白垩纪青山口组黑色页岩元素地球化学特征及沉积古环境恢复[J]. 地质科学, 2022, 57(1): 156-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202201010.htm

    WANG Lan, ZHOU Haiyan, SHANG Fei, et al. Element geochemical characteristics of black shale and paleo-sedimentary environmental restoration of Qingshankou Formation of the Cretaceous in the northern Songliao Basin[J]. Chinese Journal of Geology, 2022, 57(1): 156-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202201010.htm
    [25]
    罗超, 张焕旭, 张纪智, 等. 岩石密闭热释方法评价页岩含油性特征: 以四川盆地侏罗系大安寨段为例[J]. 石油实验地质, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712

    LUO Chao, ZHANG Huanxu, ZHANG Jizhi, et al. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 712-719. (in press) doi: 10.11781/sysydz202204712
    [26]
    [27]
    HAN Yuanjia, MAHLSTEDT N, HORSFIELD B. The Barnett shale: compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. http://d.wanfangdata.com.cn/periodical/b9519c3f49cebebedb5f37beca9502b3
    [28]
    ZINK K G, SCHEEDER G, STUECK H L, et al. Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany[J]. International Journal of Coal Geology, 2016, 163: 186-194. http://www.onacademic.com/detail/journal_1000039471561210_67b0.html
    [29]
    谌卓恒, 黎茂稳, 姜春庆, 等. 页岩油的资源潜力及流动性评价方法: 以西加拿大盆地上泥盆统Duvernay页岩为例[J]. 石油与天然气地质, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm

    CHEN Zhuoheng, LI Maowen, JIANG Chunqing, et al. Shale oil resource potential and its mobility assessment: a case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin[J]. Oil & Gas Geology, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm
    [30]
    LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. http://www.sciencedirect.com/science/article/pii/S0166516218304051
    [31]
    SANDVIK E I, YOUNG W A, CURRY D J. Expulsion from hydrocarbon sources: the role of organic absorption[J]. Organic Geochemistry, 1992, 19(1/3): 77-87. http://www.sciencedirect.com/science/article/pii/014663809290028V
    [32]
    JARVIE D M, COSKEY R J, JOHNSON M S, et al. The geology and geochemistry of the Parshall area, Mountrail County, North Dakota[M]//The Bakken-Three Forks petroleum system in the Williston Basin. Rocky Mountain Association of Geologists, 2011: 229-281.
    [33]
    曾维主, 宋之光, 曹新星. 松辽盆地北部青山口组烃源岩含油性分析[J]. 地球化学, 2018, 47(4): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201804003.htm

    ZENG Weizhu, SONG Zhiguang, CAO Xinxing. Oil potential of Qingshankou Formation source rocks in northern Songliao Basin[J]. Geochimica, 2018, 47(4): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201804003.htm
    [34]
    李昂, 张丽艳, 杨建国, 等. 松辽盆地三肇凹陷青山口组页岩油地震甜点预测方法及应用[J]. 地质与资源, 2021, 30(3): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103019.htm

    LI Ang, ZHANG Liyan, YANG Jianguo, et al. Seismic method for shale oil sweet spot prediction in Qingshankou Formation of Sanzhao Sag, Songliao Basin[J]. Geology and Resources, 2021, 30(3): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103019.htm
    [35]
    ESPITALIE J. Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance[M]//BURRUS J. Thermal modelling in sedimentary basins. Paris: Editions Technip, 1986: 475-496.
    [36]
    KING R R, JARVIE D, CANNON D, et al. Addressing the caveats of source rock pyrolysis in the unconventional world: modified methods and interpretative ideas[C]//Unconventional Resources Technology Conference. San Antonio, Texas: SEG, 2015: 919-934.
    [37]
    ZHANG Penglin, MISCH D, MENG Qingtao, et al. Comprehensive thermal maturity assessment in shales: a case study on the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China)[J]. International Journal of Earth Sciences, 2021, 110(3): 943-962. doi: 10.1007/s00531-021-02000-4
    [38]
    KATZ B J, LIN Fang. Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies[J]. AAPG Bulletin, 2021, 105(4): 695-720. http://www.researchgate.net/publication/350560378_Consideration_of_the_limitations_of_thermal_maturity_with_respect_to_vitrinite_reflectance_Tmax_and_other_proxies
    [39]
    KRUGE M A. Diagenesis of Miocene biogenic sediments in Lost Hills Oil Field, San Joaquin Basin, California[M]//ISAACS C M, GARRISON R E. Petroleum generation and occurrence in the Miocene Monterey Formation, California. Los Angeles: SEPM, 1983: 39-51.
    [40]
    JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. http://www.eesi.psu.edu/seminars-conferences/earthtalks-spring2009-marcellus-supplements/BarnettShGasJarvie.pdf
    [41]
    郭秋麟, 王建, 陈晓明, 等. 页岩油原地量和可动油量评价方法与应用[J]. 石油与天然气地质, 2021, 42(6): 1451-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106019.htm

    GUO Qiulin, WANG Jian, CHEN Xiaoming, et al. Discussion on evaluation method of total oil and movable oil in-place[J]. Oil & Gas Geology, 2021, 42(6): 1451-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106019.htm
    [42]
    姚红生, 昝灵, 高玉巧, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质, 2021, 43(5): 776-783. doi: 10.11781/sysydz202105776

    YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 776-783. doi: 10.11781/sysydz202105776
    [43]
    HU Tao, PANG Xiongqi, JIANG Shu, et al. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: a case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China[J]. Fuel, 2018, 221: 196-205. http://www.sciencedirect.com/science/article/pii/S0016236118302412
    [44]
    黄振凯, 郝运轻, 李双建, 等. 鄂尔多斯盆地长7段泥页岩层系含油气性与页岩油可动性评价: 以H317井为例[J]. 中国地质, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm

    HUANG Zhenkai, HAO Yunqing, LI Shuangjian, et al. Oil-bearing potential, mobility evaluation and significance of shale oil in Chang 7 shale system in the Ordos Basin: a case study of well H317[J]. Geology in China, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (721) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return