Volume 45 Issue 3
May  2023
Turn off MathJax
Article Contents
REN Guanbao, CHEN Lei, JI Yubing, CHENG Qingsong. Shale lithofacies types and reservoir characteristics from Ordovician Wufeng Formation to the first sub-member of the first member of Silurian Longmaxi Formation, northeast Zhaotong area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 443-454. doi: 10.11781/sysydz202303443
Citation: REN Guanbao, CHEN Lei, JI Yubing, CHENG Qingsong. Shale lithofacies types and reservoir characteristics from Ordovician Wufeng Formation to the first sub-member of the first member of Silurian Longmaxi Formation, northeast Zhaotong area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 443-454. doi: 10.11781/sysydz202303443

Shale lithofacies types and reservoir characteristics from Ordovician Wufeng Formation to the first sub-member of the first member of Silurian Longmaxi Formation, northeast Zhaotong area

doi: 10.11781/sysydz202303443
  • Received Date: 2022-09-08
  • Rev Recd Date: 2023-04-10
  • Publish Date: 2023-05-28
  • Shale lithofacies has an important influence on shale reservoirs. It controls the hydrocarbon generation capacity, storage performance and fracturing performance of shale to a certain extent. In order to study the shale lithofacies characteristics, reservoir characteristics and evaluation of Wufeng-Longmaxi formations in the northeast Zhaotong area, a detailed research was carried out based on core, thin section, X-ray diffraction and various geochemical test data. Calcareous/siliceous mixed shale lithofacies, mixed shale lithofacies, clayey/siliceous mixed shale lithofacies, mixed siliceous shale lithofacies, clay-rich siliceous shale lithofacies are developed in the study area. There is a difference in the vertical distribution of lithofacies between the south and the north of the study area. The lithofacies from Wufeng Formation to the first sub-member of the first member of Longmaxi Formation (Long1-1 submember) presents the characteristics of transition from clayey shale lithofacies associa- tion to siliceous shale lithofacies association and then to mixed shale lithofacies association in the southern area, while the northern area shows a transition trend from mixed shale lithofacies association to siliceous shale lithofacies association and then to mixed shale lithofacies association. Horizontally, the lithofacies distribution is highly heterogeneous and has poor continuity. The reservoir characteristics of different lithofacies are different. Siliceous shale has good reservoir properties, with the characteristics of "high TOC content, high gas content and high brittle mineral content". The TOC content and gas content of clayey shale are high, but the content of brittle minerals is very low. The properties of mixed shale reservoirs are complex, and generally, the mixed shale reservoirs with high siliceous content have better properties. Based on TOC content, gas content and brittle mineral content, the shale lithofacies evaluation standard is established by combining analytic hierarchy process and entropy method, and the dominant lithofacies are determined. Mixed siliceous shale lithofacies, calcium-rich siliceous shale litho- facies, calcareous/siliceous mixed shale lithofaciesis are class Ⅰ dominant lithofacies; clay-rich siliceous shale lithofacies, mixed shale lithofacies and clayey/siliceous mixed shale lithofacies are class Ⅱ dominant lithofacies; mixed clayey shale lithofacies and silicon-rich clayey shale lithofacies are non-dominant lithofacies.

     

  • loading
  • [1]
    李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202108001.htm

    LI Jian, WANG Xiaobo, HOU Lianhua, et al. Geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202108001.htm
    [2]
    ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation, innovation and vision of "carbon neutrality"[J]. Natural Gas Industry B, 2021, 8(5): 523-537. doi: 10.1016/j.ngib.2021.08.009
    [3]
    陆扬博. 上扬子五峰组和龙马溪组富有机质页岩岩相定量表征及沉积过程恢复[D]. 武汉: 中国地质大学, 2020.

    LU Yangbo. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for upper Yangtze Wufeng and Longmaxi organic-rich shales[D]. Wuhan: China University of Geosciences, 2020.
    [4]
    TIAN Jijun, XU Chuanzheng, LI Xin, et al. Depositional environment and pore structure of mixed lithofacies shale of the Longmaxi Formation in the DM block, the southern Sichuan Basin, China[J]. Energy Exploration & Exploitation, 2020, 38(3): 629-653. http://www.nstl.gov.cn/paper_detail.html?id=18b4556ab9e58d3e13686af1d0ecddfe
    [5]
    徐传正, 李鑫, 田继军, 等. 四川盆地南缘龙马溪组混合岩相页岩及其沉积环境[J]. 煤炭科学技术, 2021, 49(5): 208-217. doi: 10.13199/j.cnki.cst.2021.05.027

    XU Chuanzheng, LI Xin, TIAN Jijun, et al. Mixed lithofacies shale and depositional environment of Longmaxi Formation in southern margin of Sichuan Basin[J]. Coal Science and Technology, 2021, 49(5): 208-217. doi: 10.13199/j.cnki.cst.2021.05.027
    [6]
    李明隆, 谭秀成, 李延钧, 等. 页岩岩相划分及含气性评价: 以滇黔北地区五峰组—龙马溪组为例[J]. 断块油气田, 2021, 28(6): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106003.htm

    LI Minglong, TAN Xiucheng, LI Yanjun, et al. Shale lithofacies classification and evaluation of gas-bearing property: a case study of the Wufeng-Longmaxi Formation in northern Yunnan and Guizhou[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106003.htm
    [7]
    XU Shang, GUO Qiyang, HAO Fang, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: dominated by lithofacies or preservation condition?[J]. Marine and Petroleum Geology, 2020, 114: 104211. doi: 10.1016/j.marpetgeo.2019.104211
    [8]
    欧成华, 梁成钢, 罗利, 等. 页岩岩相分类表征及对建产区产能的影响[J]. 沉积学报, 2021, 39(2): 269-280. doi: 10.14027/j.issn.1000-0550.2020.132

    OU Chenghua, LIANG Chenggang, LUO Li, et al. The lithofacies classification and its influence on the gas production capacity in the shale gas production area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 269-280. doi: 10.14027/j.issn.1000-0550.2020.132
    [9]
    GOU Qiyang, XU Shang, HAO Fang, et al. Quantitative calculated shale gas contents with different lithofacies: a case study of Fuling gas shale, Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103222. doi: 10.1016/j.jngse.2020.103222
    [10]
    沈骋, 任岚, 赵金洲, 等. 页岩岩相组合划分标准及其对缝网形成的影响: 以四川盆地志留系龙马溪组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101010.htm

    SHEN Cheng, REN Lan, ZHAO Jinzhou, et al. Division of shale lithofacies associations and their impact on fracture network formation in the Silurian Longmaxi Formation, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101010.htm
    [11]
    WANG Guochang, CARR T R. Methodology of organic-rich shale lithofacies identification and prediction: a case study from Marcellus shale in the Appalachian Basin[J]. Computers and Geosciences, 2012, 49: 151-163. doi: 10.1016/j.cageo.2012.07.011
    [12]
    彭君, 周勇水, 李红磊, 等. 渤海湾盆地东濮凹陷盐间细粒沉积岩岩相与含油性特征[J]. 断块油气田, 2021, 28(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102013.htm

    PENG Jun, ZHOU Yongshui, LI Honglei, et al. Lithofacies and oil-bearing characteristics of fine-grained sedimentary rocks of salt-layers in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102013.htm
    [13]
    廖崇杰, 陈雷, 郑健, 等. 四川盆地长宁西部地区上奥陶统五峰组—下志留统龙马溪组龙一1亚段页岩岩相划分及意义[J]. 石油实验地质, 2022, 44(6): 1037-1047. doi: 10.11781/sysydz2022061037

    LIAO Chongjie, CHEN Lei, ZHENG Jian, et al. Classification of shale lithofacies from Ordovician Wufeng Formation to first section of first member of Silurian Longmaxi Formation, western Changning area, Sichuan Basin, and its significance[J]. Petroleum Geology & Experiment, 2022, 44(6): 1037-1047. doi: 10.11781/sysydz2022061037
    [14]
    WANG Ziyi, CHEN Lei, CHEN Dongxia, et al. Characterization and evaluation of shale lithofacies within the lowermost Longmaxi-Wufeng Formation in the southeast Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107353. doi: 10.1016/j.petrol.2020.107353
    [15]
    KRUMBEIN W C. Lithofacies maps and regional sedimentary-stratigraphic analysis[J]. AAPG Bulletin, 1948, 32(10): 1909-1923. http://www.researchgate.net/publication/302213916_Lithofacies_maps_and_regional_sedimentary-stratigraphic_analysis
    [16]
    吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm

    WU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
    [17]
    ZHANG Luchuan, XIAO Dianshi, LU Shuangfang, et al. Pore deve-lopment of the Lower Longmaxi shale in the southeastern Sichuan Basin and its adjacent areas: insights from lithofacies identification and organic matter[J]. Marine and Petroleum Geology, 2020, 122: 104662. doi: 10.1016/j.marpetgeo.2020.104662
    [18]
    LIU Bo, WANG Haoli, FU Xiaofei, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432. doi: 10.1306/08031817416
    [19]
    梁兴, 张廷山, 舒红林, 等. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价[J]. 中国地质, 2020, 47(1): 72-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001007.htm

    LIANG Xing, ZHANG Tingshan, SHU Honglin, et al. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong national shale gas demonstration area in the northern Yunnan-Guizhou[J]. Geology in China, 2020, 47(1): 72-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001007.htm
    [20]
    徐政语, 梁兴, 鲁慧丽, 等. 四川盆地南缘昭通页岩气示范区构造变形特征及页岩气保存条件[J]. 天然气工业, 2019, 39(10): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910003.htm

    XU Zhengyu, LIANG Xing, LU Huili, et al. Structural deformation characteristics and shale gas preservation conditions in the Zhaotong national shale gas demonstration area along the southern margin of the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(10): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910003.htm
    [21]
    FENG Ziqi, DONG Dazhong, TIAN Jinqiang, et al. Geochemical characteristics of Lower Silurian shale gas in the Changning-Zhaotong exploration blocks, southern periphery of the Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2019, 174: 281-290. doi: 10.1016/j.petrol.2018.11.022
    [22]
    梁兴, 管彬, 李军龙, 等. 山地浅层页岩气地质工程一体化高效压裂试气技术: 以昭通国家级页岩气示范区太阳气田为例[J]. 天然气工业, 2021, 41(S1): 124-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1019.htm

    LIANG Xing, GUAN Bin, LI Junlong, et al. Key technologies of shallow shale gas reservoir in mountainous area: taking Taiyang gas field in Zhaotong national shale gas demonstration area as an example[J]. Natural Gas Industry, 2021, 41(S1): 124-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1019.htm
    [23]
    芮昀, 王长江, 张凤生, 等. 昭通国家级页岩气示范区页岩气储层微观孔喉表征[J]. 天然气工业, 2021, 41(S1): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1012.htm

    RUI Yun, WANG Changjiang, ZHANG Fengsheng, et al. Characterization of micro-pore throats in the shale gas reservoirs of Zhaotong national shale gas demonstration area[J]. Natural Gas Industry, 2021, 41(S1): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1012.htm
    [24]
    王鹏万, 李昌, 张磊, 等. 五峰组—龙马溪组储层特征及甜点层段评价: 以昭通页岩气示范区A井为例[J]. 煤炭学报, 2017, 42(11): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711018.htm

    WANG Pengwan, LI Chang, ZHANG Lei, et al. Characteristic of the shale gas reservoirs and evaluation of sweet spot in Wufeng-Longmaxi formation: a case from the A well in Zhaotong shale gas demonsration zone[J]. Journal of China Coal Society, 2017, 42(11): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711018.htm
    [25]
    汤良杰, 郭彤楼, 田海芹, 等. 黔中地区多期构造演化、差异变形与油气保存条件[J]. 地质学报, 2008, 82(3): 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803001.htm

    TANG Liangjie, GUO Tonglou, TIAN Haiqin, et al. Poly-cycle tectonic evolution, differential deformation and hydrocarbon reservation of central Guizhou and adjacent region[J]. Acta Geologica Sinica, 2008, 82(3): 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803001.htm
    [26]
    周楚凌. 滇黔北昭通示范区五峰组—龙马溪组页岩气保存条件分析[D]. 成都: 西南石油大学, 2018.

    ZHOU Chuling. Analysis of shale gas preservation conditions of the Wufeng-Longmaxi formation in Zhaotong demonstration area, northern Yunnan and Guizhou[D]. Chengdu: Southwest Petroleum University, 2018.
    [27]
    赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 470-487. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603011.htm

    ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603011.htm
    [28]
    ABOUELRESH M, BABALOLA L, BOKHARI A, et al. Sedi-mentology, geochemistry and reservoir potential of the organic-rich Qusaiba Shale, Tabuk Basin, NW Saudi Arabia[J]. Marine and Petroleum Geology, 2020, 111: 240-260. http://www.sciencedirect.com/science/article/pii/S0264817219301928
    [29]
    LIU Bo, WANG Sheng, KE Xuan, et al. Mechanical characteristics and factors controlling brittleness of organic-rich continental shales[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107464. http://www.sciencedirect.com/science/article/pii/S0264817220300982
    [30]
    杨万芹. 东营凹陷沙三下—沙四上亚段页岩岩相特征及发育规律[D]. 青岛: 中国石油大学(华东), 2018.

    YANG Wanqin. Shale lithofacies characteristics and development rule of the lower Es3 and upper Es4, Dongying Sag[D]. Qingdao: China University of Petroleum (North China), 2018.
    [31]
    DE S, KUMAR VIKRAM V, SENGUPTA D. Application of support vector regression analysis to estimate total organic carbon content of Cambay shale in Cambay Basin, India: a case study[J]. Petroleum Science and Technology, 2019, 37(10): 1155-1164.
    [32]
    MAHMOUD A A, GAMAL H, ELKATATNY S, et al. Estimating the total organic carbon for unconventional shale resources during the drilling process: a machine learning approach[J]. Journal of Energy Resources Technology, 2022, 144(4): 043004.
    [33]
    ZHANG Weiwei, HUANG Zhilong, GUO Xiaobo, et al. A study on pore systems of Silurian highly mature marine shale in southern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103094. http://www.sciencedirect.com/science/article/pii/S1875510019303464
    [34]
    LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Estimation of gas-in-place content in coal and shale reservoirs: a process analysis method and its preliminary application[J]. Fuel, 2020, 259: 116266. http://www.sciencedirect.com/science/article/pii/S0016236119316205
    [35]
    MEWS K S, ALHUBAIL M M, BARATI R G. A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs[J]. Geosciences, 2019, 9(7): 319. http://www.researchgate.net/publication/334576595_A_Review_of_Brittleness_Index_Correlations_for_Unconventional_Tight_and_Ultra-Tight_Reservoirs
    [36]
    IBAD S M, PADMANABHAN E. Lithofacies, mineralogy, and pore types in Paleozoic gas shales from Western Peninsular Malaysia[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110239.
    [37]
    张冲, 夏富国, 夏玉琴, 等. 基于层次分析法的致密砂岩储层可压性综合评价[J]. 钻采工艺, 2021, 44(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202101014.htm

    ZHANG Chong, XIA Fuguo, XIA Yuqing, et al. Comprehensive evaluation of fracability of tight sandstone reservoirs based on analytic hierarchy process[J]. Drilling & Production Technology, 2021, 44(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202101014.htm
    [38]
    陆亚秋, 王进, 曹梦茜. 基于改进的层次分析法的页岩气开发选区评价方法[J]. 油气藏评价与开发, 2021, 11(2): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102009.htm

    LU Yaqiu, WANG Jin, CAO Mengxi. Evaluation method of shale gas development area selection based on improved analytic hierarchy process[J]. Reservoir Evaluation and Development, 2021, 11(2): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102009.htm
    [39]
    张军华, 黄广谭, 李军, 等. 基于层次分析法的地震有利储层预测[J]. 特种油气藏, 2015, 22(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201505004.htm

    ZHANG Junhua, HUANG Guangtan, LI Jun, et al. Seismic favorable reservoir prediction based on analytic hierarchy process[J]. Special Oil & Gas Reservoirs, 2015, 22(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201505004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (524) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return