Volume 45 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
HAN Jun, DONG Shaofeng, YOU Donghua, ZHANG Sheng, XIAO Chongyang, WANG Yingming. Hydrothermal dissolution of deep-buried carbonate rocks and its significance for hydrocarbon exploration in Shunnan area, the Tarim Basin: taking well Peng-1 in Shunnan area as a case[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 770-779. doi: 10.11781/sysydz202304770
Citation: HAN Jun, DONG Shaofeng, YOU Donghua, ZHANG Sheng, XIAO Chongyang, WANG Yingming. Hydrothermal dissolution of deep-buried carbonate rocks and its significance for hydrocarbon exploration in Shunnan area, the Tarim Basin: taking well Peng-1 in Shunnan area as a case[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 770-779. doi: 10.11781/sysydz202304770

Hydrothermal dissolution of deep-buried carbonate rocks and its significance for hydrocarbon exploration in Shunnan area, the Tarim Basin: taking well Peng-1 in Shunnan area as a case

doi: 10.11781/sysydz202304770
  • Received Date: 2023-05-09
  • Rev Recd Date: 2023-06-21
  • Publish Date: 2023-07-28
  • In order to reveal the genetic mechanism of deep-buried carbonate reservoirs, a study was made based on well Peng-1 in Shunnan area of the Tarim Basin. The core section of well Peng-1 revealed that a large number of fractures and dissolution pores were developed in the carbonate rocks with buried depth of over 7 500 m. Based on detailed core observation and description, it was found that the dissolution pores were mainly distributed in the Upper Cambrian dolomites in the lower part of the core section and few in the Lower Ordovician carbonates in the upper part of the core section. The diameter of pores increases gradually with the increase of burial depth, which indicated that the pores were formed by infiltration of deep-seated hydrothermal fluids rather than meteoric water. The similar δ13C values and 87Sr/86Sr ratios of different types of minerals (including dolomite and calcite) with host rocks indicated that the diagenetic fluids inherited the geochemical characteristics of original sequestered pore water through intense water-rock action with the original carbonate rocks. However, the significantly negative δ18O values (with an average of -13.26 ‰) suggested that they were precipitated from fluids with high temperatures. This inference was verified by the results of fluid inclusion microthermometry, which confirmed that dolomite recrystallization and subsequent calcite precipitation were closely associated with fault-related deep-seated hydrothermal fluids. In addition, whole diameter CT scanning revealed that fractures can significantly improve the reservoir property and permeability of the dolomite formed by hydrothermal dolomitization. The permeability can be improved by at least one order of magnitude, i.e. from 0.02×10-3 μm2 to 0.39×10-3 μm2. Hydrothermal-related dolomite reservoirs may be extensively developed in the deep/ultra-deep buried carbonates in the Tarim Basin in view of the occurrence of such phenomenon in the well TS1 and Gucheng area. Thus, in the future hydrocarbon exploration in the Tarim Basin and elsewhere, hydrothermal-altered dolomite reservoirs deserve more attention.

     

  • All authors disclose no relevant conflict of interests.
    The core observation was completed by HAN Jun. The study was designed by HAN Jun. The experimental operation was completed by YOU Donghua. The experimental data was analyzed by DONG Shaofeng and HAN Jun. The Observation of rock slices and map drawing was completed by XIAO Chong-yang. The manuscript was drafted and revised by HAN Jun, ZHANG Sheng and WANG Yingming. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    陈代钊. 构造—热液白云岩化作用与白云岩储层[J]. 石油与天然气地质, 2008, 29(5): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200805014.htm

    CHEN Daizhao. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J]. Oil & Gas Geology, 2008, 29(5): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200805014.htm
    [2]
    ZHU Dongya, JIN Zhijun, HU Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science China Earth Sciences, 2010, 53(3): 368-381. doi: 10.1007/s11430-010-0028-9
    [3]
    焦存礼, 何治亮, 邢秀娟, 等. 塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2011, 27(1): 277-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101020.htm

    JIAO Cunli, HE Zhiliang, XING Xiujuan, et al. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 277-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101020.htm
    [4]
    JIANG Lei, CAI Chunfang, WORDEN R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7): 2130-2157. doi: 10.1111/sed.12300
    [5]
    JIANG Lei, PAN Wenqin, CAI Chunfang, et al. Fluid mixing induced by hydrothermal activity in the Ordovician carbonates in Tarim Basin, China[J]. Geofluids, 2015, 15(3): 483-498. doi: 10.1111/gfl.12125
    [6]
    GUO Chuan, CHEN Daizhao, QING Hairuo, et al. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China[J]. Marine and Petroleum Geology, 2016, 72: 295-316. doi: 10.1016/j.marpetgeo.2016.01.023
    [7]
    EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233. doi: 10.1306/05031110187
    [8]
    漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm

    QI Lixin, YUN Lu, CAO Zicheng, et al. Geological reserves assessment and petroleum exploration targets in Shunbei oil & gas field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm
    [9]
    李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912005.htm

    LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912005.htm
    [10]
    马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
    [11]
    贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997.

    JIA Chengzao. Tectonic characteristics and petroleum, Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1977.
    [12]
    何登发, 周新源, 张朝军, 等. 塔里木地区奥陶纪原型盆地类型及其演化[J]. 科学通报, 2007, 52(S1): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1015.htm

    HE Dengfa, ZHOU Xinyuan, ZHANG Chaojun, et al. Tectonic types and evolution of Ordovician proto-type basins in the Tarim region[J]. Chinese Science Bulletin, 2007, 52(S1): 164-177. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1015.htm
    [13]
    LIN Changsong, YANG Haijun, LIU Jingyan, et al. Sequence architecture and depositional evolution of the Ordovician carbonate platform margins in the Tarim Basin and its response to tectonism and sea-level change[J]. Basin Research, 2012, 24(5): 559-582. doi: 10.1111/j.1365-2117.2011.00536.x
    [14]
    LIN Changsong, YANG Haijun, LIU Jingyan, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46: 1-19. doi: 10.1016/j.jseaes.2011.10.004
    [15]
    漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm

    QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm
    [16]
    李宗杰, 王鹏, 陈绪云, 等. 塔里木盆地顺南地区超深白云岩储层地震、地质综合预测[J]. 石油与天然气地质, 2020, 41(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001007.htm

    LI Zongjie, WANG Peng, CHEN Xuyun, et al. Integrated seismic and geological prediction of ultra-deep dolomite reservoir in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001007.htm
    [17]
    云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm

    YUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406008.htm
    [18]
    任建业, 张俊霞, 阳怀忠, 等. 塔里木盆地中央隆起带断裂系统分析[J]. 岩石学报, 2011, 27(1): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101015.htm

    REN Jianye, ZHANG Junxia, YANG Huaizhong, et al. Analysis of fault systems in the Central Uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101015.htm
    [19]
    DONG Shaofeng, CHEN Daizhao, QING Hairuo, et al. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry[J]. Marine and Petroleum Geology, 2013, 46: 270-286.
    [20]
    DONG Shaofeng, CHEN Daizhao, ZHOU Xiqiang, et al. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China[J]. Sedimentology, 2017, 64(4): 1079-1106.
    [21]
    BODNAR R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.
    [22]
    QING Hairuo, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442.
    [23]
    VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88.
    [24]
    BURKE W H, DENISON R E, HETHERINGTON E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10(10): 516-519.
    [25]
    DAVIES G R, SMITH L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
    [26]
    HITZMAN M W, ALLAN J R, BEATY D W. Regional dolomitization of the Waulsortian limestone in southeastern Ireland: evidence of large-scale fluid flow driven by the Hercynian orogeny[J]. Geology, 1998, 26(6): 547-550.
    [27]
    MACHEL H G, ANDERSON J H. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta[J]. Journal of Sedimentary Petrology, 1989, 59(6): 891-911.
    [28]
    邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
    [29]
    WOODY R E, GREGG J M, KOEDERITZ L F. Effect of texture on the petrophysical properties of dolomite-evidence from the Cambrian-Ordovician of southeastern Missouri[J]. AAPG Bulletin, 1996, 80(1): 119-132.
    [30]
    QING Hairuo, MOUNTJOY E. Large-scale fluid flow in the Middle Devonian Presqu'ile Barrier, Western Canada sedimentary basin[J]. Geology, 1992, 20(10): 903-906.
    [31]
    YAO Qingjun, DEMICCO R V. Paleoflow patterns of dolomitizing fluids and paleohydrogeology of the southern Canadian Rocky Mountains: evidence from dolomite geometry and numerical modeling[J]. Geology, 1995, 23(9): 791-794.
    [32]
    BRAITHWAITE C J R, RIZZI G. The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland[J]. Sedimentology, 1997, 44(3): 421-440.
    [33]
    DUGGAN J P, MOUNTJOY E W, STASIUK L D. Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada[J]. Sedimentology, 2001, 48(2): 301-323.
    [34]
    GREGG J M, SHELTON K L, JOHNSON A W, et al. Dolomitization of the waulsortian limestone (lower Carboniferous) in the Irish midlands[J]. Sedimentology, 2001, 48(4): 745-766.
    [35]
    CARMICHAEL S K, FERRY J M, MCDONOUGH W F. Formation of replacement dolomite in the Latemar carbonate buildup, dolomites, Northern Italy: part 1. field relations, mineralogy, and geochemistry[J]. American Journal of Science, 2008, 308(7): 851-884.
    [36]
    ZHANG Juntao, HU Wenxuan, QIAN Yixiong, et al. Formation of saddle dolomites in Upper Cambrian carbonates, western Tarim Basin (northwest China): implications for fault-related fluid flow[J]. Marine and Petroleum Geology, 2009, 26(8): 1428-1440.
    [37]
    WEI Wenwen, CHEN Daizhao, QING Hairuo, et al. Hydrothermal dissolution of deeply buried Cambrian dolomite rocks and porosity generation: integrated with geological studies and reactive transport modeling in the Tarim Basin, China[J]. Geofluids, 2017, 2017: 9562507.
    [38]
    王珊, 曹颖辉, 杜德道, 等. 塔里木盆地古城地区奥陶系鹰山组白云岩特征及孔隙成因[J]. 岩石学报, 2020, 36(11): 3477-3492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011014.htm

    WANG Shan, CAO Yinghui, DU Dedao, et al. Characteristics and pore genesis of dolomite in Ordovician Yingshan Formation in Gucheng area, Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3477-3492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011014.htm
    [39]
    刘红, 冯子辉, 邵红梅, 等. U-Pb同位素定年分析在热液对白云岩储层改造研究中的应用——以塔里木盆地古城地区下奥陶统鹰三段为例[J]. 岩石学报, 2022, 38(3): 765-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202203010.htm

    LIU Hong, FENG Zihui, SHAO Hongmei, et al. Application of U-Pb dating technique in the study of hydrothermal activities of dolomite reservoir: a case study on 3rd member of Yingshan Formation in Gucheng area, Tarim Basin, NW China[J]. Acta Petrologica Sinica, 2022, 38(3): 765-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202203010.htm
    [40]
    LU Ziye, CHEN Honghan, QING Hairuo, et al. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim Basin, NW China: implications for the nature and timing of silicification[J]. Sedimentary Geology, 2017, 359: 29-43.
    [41]
    YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration & Exploitation, 2018, 36(4): 820-849.
    [42]
    DONG Shaofeng, YOU Donghua, GUO Zenghui, et al. Intense silicification of Ordovician carbonates in the Tarim Basin: constraints from fluid inclusion Rb-Sr isotope dating and geochemistry of quartz[J]. Terra Nova, 2018, 30(6): 406-413.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (339) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return