Citation: | YU Xiaolu, LI Longlong, JIANG Hong, LU Longfei, DU Chongjiao. Application of sparry grain limestone petrographic analysis combining image processing and deep learning[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 1026-1038. doi: 10.11781/sysydz2023051026 |
[1] |
刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980.
LIU Baojun. Sedimentary rocks[M]. Beijing: Geology Press, 1980.
|
[2] |
MOORE C H. Carbonate reservoirs: porosity, evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001.
|
[3] |
FLÜGELE. Microfacies of carbonate rocks: analysis, interpretation and application[M]. Berlin: Springer, 2010.
|
[4] |
LIU Jingtuo, DENG Yafeng, BAI Tao, et al. Targeting ultimate accuracy: face recognition via deep embedding[EB/OL]. 2015[2023-06-28].
|
[5] |
陈利. 基于深度学习的车牌识别系统设计[J]. 计算机技术与发展, 2018, 28(6): 85-89. doi: 10.3969/j.issn.1673-629X.2018.06.019
CHEN Li. Design of license plate recognition system based on deep learning[J]. Computer Technology and Development, 2018, 28(6): 85-89. doi: 10.3969/j.issn.1673-629X.2018.06.019
|
[6] |
ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. doi: 10.1038/nature21056
|
[7] |
张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201804017.htm
ZHANG Xinyu, GAO Hongbo, ZHAO Jianhui, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201804017.htm
|
[8] |
PERRING C S, BARNES S J, VERRALL M, et al. Using automated digital image analysis to provide quantitative petrographic data on olivine-phyric basalts[J]. Computers & Geosciences, 2004, 30(2): 183-195.
|
[9] |
叶润青, 牛瑞卿, 张良培. 基于多尺度分割的岩石图像矿物特征提取及分析[J]. 吉林大学学报(地球科学版), 2011, 41(4): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104043.htm
YE Runqing, NIU Ruiqing, ZHANG Liangpei. Mineral features extraction and analysis based on multiresolution segmentation of petrographic image[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4): 1253-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104043.htm
|
[10] |
刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925-931. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805022.htm
LIU Chun, XU Qiang, SHI Bin, et al. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805022.htm
|
[11] |
张吉群, 胡长军, 和冬梅, 等. 孔隙结构图像分析方法及其在岩石图像中的应用[J]. 测井技术, 2015, 39(5): 550-554. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201505003.htm
ZHANG Jiqun, HU Changjun, HE Dongmei, et al. Image analysis method of pore structure and its application in rock image[J]. Well Logging Technology, 2015, 39(5): 550-554. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201505003.htm
|
[12] |
胡祺. 融合多维信息的岩石薄片图像深度学习分类方法[D]. 杭州: 浙江大学, 2019.
HU Qi. Thinsection image classification method using deep learning of integrated multi-dimensional information[D]. Hangzhou: Zhejiang University, 2019.
|
[13] |
郝慧珍, 顾庆, 胡修棉. 基于机器学习的矿物智能识别方法研究进展与展望[J]. 地球科学, 2021, 46(9): 3091-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202109005.htm
HAO Huizhen, GU Qing, HU Xiumian. Research advances and prospective in mineral intelligent identification based on machine learning[J]. Earth Science, 2021, 46(9): 3091-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202109005.htm
|
[14] |
余晓露, 叶恺, 杜崇娇, 等. 基于卷积神经网络的碳酸盐岩生物化石显微图像识别[J]. 石油实验地质, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
YU Xiaolu, YE Kai, DU Chongjiao, et al. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. Petroleum Geology & Experiment, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
|
[15] |
张涛, 雷丹博, 王宾, 等. 陕南寒武系底部宽川铺组微体化石人工智能识别[J]. 古生物学报, 2019, 58(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201902001.htm
ZHANG Tao, LEI Danbo, WANG Bin, et al. Artificial intelligence identification of microfossils from the Lower Cambrian Kuchuanpu Formation in southern Shaanxi, China[J]. Acta Palaeontologica Sinica, 2019, 58(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201902001.htm
|
[16] |
姜枫, 顾庆, 郝慧珍, 等. 基于语义特征提取的砂岩薄片图像颗粒分割方法[J]. 中国科学: 信息科学, 2020, 50(1): 109-127. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202001005.htm
JIANG Feng, GU Qing, HAO Huizhen, et al. Grain segmentation of sandstone thin section images based on semantic feature extraction[J]. Science China Information Sciences, 2020, 50(1): 109-127. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202001005.htm
|
[17] |
RUBO R A, DE CARVALHO CARNEIRO C, MICHELON M F, et al. Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106382.
|
[18] |
KOESHIDAYATULLAH A, MORSILLI M, LEHRMANN D J, et al. Fully automated carbonate petrography using deep convolutional neural networks[J]. Marine and Petroleum Geology, 2020, 122: 104687.
|
[19] |
IZADI H, SADRI J, MEHRAN N A. A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering[J]. Computers & Geosciences, 2015, 81: 38-52.
|
[20] |
国家能源局. 岩石薄片鉴定: SY/T 5368-2016[S]. 北京: 石油工业出版社, 2017.
National Energy Administration. Identification for thin section of rocks: SY/T 5368-2016[S]. Beijing: Petroleum Industry Press, 2017.
|
[21] |
GONZALEZ R C, WOODS R E. Digital image processing[M]. 3rd ed. A Wiley-Interscience Publication, 2010.
|
[22] |
张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm
ZHANG Shun, GONG Yihong, WANG Jinjun. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm
|
[23] |
隋微波, 程思. 基于卷积神经网络的砂岩数字岩心绝对渗透率计算方法[J]. 油气地质与采收率, 2022, 29(1): 128-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202201016.htm
SUI Weibo, CHENG Si. Calculation methods for absolute permeability of sandstone digital cores based on convolutional neural networks[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 128-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202201016.htm
|
[24] |
KRUMBEIN W C, SLOSS L L. Stratigraphy and sedimentation[M]. San Francisco: Freeman, 1963: 676.
|
[25] |
孙世强, 左海维, 赵露婷. 联合特征相似性度量和交并比的检测框优选研究[J]. 电脑知识与技术, 2019, 15(29): 190-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201929085.htm
SUN Shiqiang, ZUO Haiwei, ZHAO Luting. Research on detection box optimization of joint feature similarity measurement and intersection over union[J]. Computer Knowledge and Technology, 2019, 15(29): 190-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201929085.htm
|