Volume 45 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
CAO Zicheng, JIANG Huashan, ZHANG Juncheng, GENG Feng, SHA Xuguang, HAO Jianlong, LI Tong, GUO Xiaowen, TAO Ze. Structure and evolution of Precambrian basement in southwestern Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 844-856. doi: 10.11781/sysydz202305844
Citation: CAO Zicheng, JIANG Huashan, ZHANG Juncheng, GENG Feng, SHA Xuguang, HAO Jianlong, LI Tong, GUO Xiaowen, TAO Ze. Structure and evolution of Precambrian basement in southwestern Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 844-856. doi: 10.11781/sysydz202305844

Structure and evolution of Precambrian basement in southwestern Tarim Basin

doi: 10.11781/sysydz202305844
  • Received Date: 2023-05-04
  • Rev Recd Date: 2023-09-13
  • Publish Date: 2023-09-28
  • The intensifying exploration for deep-buried oil and gas reserves in the southwestern Tarim Basin accelerates the necessity to understand how the structure and evolution of the Precambrian basement affect the development and distribution of Precambrian strata. However, the lack of systematic and comprehensive understanding of the structural characteristics of the Precambrian basement in the southwestern Tarim Basin restricts further advancements in the exploration of ultra-deep oil and gas reserves in this area. Based on the previous research results, this study analyzed the lithology, age, structure, and evolution of the Precambrian basement in the southwestern Tarim Basin by utilizing integrated research methods of geology and geophysics and in combination with the U-Pb dating results of the Precambrian basement. The results reveal that the structure of the Precambrian basement in the Bachu uplift region is characterized by Paleozoic strata overlying directly on the Paleo-proterozoic metamorphic rocks/granites. In the Maigaiti slope and southwestern depression, it exhibits a typical three-tier structure: the Paleoproterozoic metamorphic rocks/granites at the bottom, overlain by sedimentary build-ups from the rifting to depression evolution of the Nanhua-Sinian system. Evolution of the Precambrian basement in the southwestern Tarim Basin was primarily transpired in five phases: continental rifting in the Columbia supercontinent (> 1.1 Ga), assembly of the southwestern Tarim block and the Australian plate (about 1.0 Ga), assemblage between the northern and southern Tarim blocks (900-800 Ma), Nanhua rifting period (760-640 Ma), and Sinian depression period (< 635 Ma). The uplift and downwarping structures during the Nanhua rifting period dictated the development of the Sinian-Lower Cambrian sedimentary strata. In-depth research into the structure and evolution of the Precambrian basement in the southwestern Tarim Basin, as presented in this study, provides important theoretical basis for deep oil and gas exploration in the region, and helps to promote further development of ultra-deep oil and gas exploration.

     

  • All authors disclose no relevant conflict of interests.
    The study was designed by CAO Zicheng, JIANG Huashan, GENG Feng, SHA Xuguang, HAO Jianlong, and GUO Xiaowen. The experimental operation was completed by ZHANG Juncheng, LI Tong and TAO Ze. The manuscript was drafted by CAO Zicheng, TAO Ze and ZHANG Juncheng and revised by all the authors. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183. doi: 10.3969/j.issn.1001-3873.1999.03.001

    JIA Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183. doi: 10.3969/j.issn.1001-3873.1999.03.001
    [2]
    王小多, 程顺有, 许小强. 塔里木盆地高分辨率卫星磁异常特征[J]. 地球物理学进展, 2008, 23(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200801002.htm

    WANG Xiaoduo, CHENG Shunyou, XU Xiaoqiang. The feature of high resolution satellite magnetic anomalies over Tarim Basin[J]. Progress in Geophysics, 2008, 23(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200801002.htm
    [3]
    CHEN Yan, XU Bei, ZHAN Sheng, et al. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications[J]. Precambrian Research, 2004, 133(3/4): 271-281.
    [4]
    郭召杰, 张志诚, 贾承造, 等. 塔里木克拉通前寒武纪基底构造格架[J]. 中国科学(D辑), 2000, 30(6): 568-575. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200006001.htm

    GUO Zhaojie, ZHANG Zhicheng, JIA Chengzao, et al. Tectonics of Precambrian basement of the Tarim craton[J]. Science in China Series D: Earth Sciences, 2001, 44(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200006001.htm
    [5]
    张耀荣. 塔里木盆地背景磁场特征与古基底结构及其油气远景的探讨[J]. 新疆石油地质, 1984(4): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD198404001.htm

    ZHANG Yaorong. Exploration of the background magnetic field characteristics and paleobasement structure of Tarim Basin and its hydrocarbon prospect[J]. Xinjiang Petroleum Geology, 1984(4): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD198404001.htm
    [6]
    杨鑫, 徐旭辉, 钱一雄, 等. 塔里木盆地基底组成的区域差异性探讨[J]. 大地构造与成矿学, 2014, 38(3): 544-556. doi: 10.16539/j.ddgzyckx.2014.03.004

    YANG Xin, XU Xuhui, QIAN Yixiong, et al. Discussion on regional differences of basement composition of the Tarim Basin, NW China[J]. Geotectonica et Metallogenia, 2014, 38(3): 544-556. doi: 10.16539/j.ddgzyckx.2014.03.004
    [7]
    姜海健, 陈强路, 杨鑫, 等. 塔里木盆地新元古代裂谷盆地层序样式[J]. 地质学报, 2017, 91(3): 588-604. doi: 10.3969/j.issn.0001-5717.2017.03.007

    JIANG Haijian, CHEN Qianglu, YANG Xin, et al. The style of sequence stratigraphy of neoproterozoic rift basin in the Tarim Basin[J]. Acta Geologica Sinica, 2017, 91(3): 588-604. doi: 10.3969/j.issn.0001-5717.2017.03.007
    [8]
    李勇, 陈才, 冯晓军, 等. 塔里木盆地西南部南华纪裂谷体系的发现及意义[J]. 岩石学报, 2016, 32(3): 588-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603014.htm

    LI Yong, CHEN Cai, FENG Xiaojun, et al. New discovery of Nanhuaian rift system in southwestern Tarim Basin and its geological significance[J]. Acta Petrologica Sinica, 2016, 32(3): 588-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603014.htm
    [9]
    郭召杰, 张志诚, 王建君. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义[J]. 科学通报, 1998, 43(18): 1981-1984. doi: 10.3321/j.issn:0023-074X.1998.18.018

    GUO Zhaojie, ZHANG Zhicheng, WANG Jianjun. Sm-Nd isochron ages and their geotectonic significance in the ophiolite belt of the northern margin of Aljinshan[J]. Chinese Science Bulletin, 1998, 43(18): 1981-1984. doi: 10.3321/j.issn:0023-074X.1998.18.018
    [10]
    汤好书, 周振菊, 陈衍景, 等. 塔里木南缘铁克里克构造带中段埃连卡特群地球化学特征及其指示意义[J]. 矿物学报, 2015, 35(S1): 544-545. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1391.htm

    TANG Haoshu, ZHOU Zhenju, CHEN Yanjing, et al. Geochemical characteristics of the Elenkat Group and its indicative significance in the middle part of the Tieklik tectonic zone on the southern edge of the Tarim Basin[J]. Acta Mineralogica Sinica, 2015, 35(S1): 544-545. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1391.htm
    [11]
    李祥权, 丁洪坤, 彭鹏, 等. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据[J]. 地球科学, 2021, 46(8): 2819-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108010.htm

    LI Xiangquan, DING Hongkun, PENG Peng, et al. Provenance of Silurian Kepingtage Formation in Tazhong area, Tarim Basin: evidence from detrital zircon U-Pb geochronology[J]. Earth Science, 2021, 46(8): 2819-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108010.htm
    [12]
    吴功成, 丁嘉鑫, 王忠梅, 等. 新疆库鲁克塔格地区基性—超基性岩的年代学研究及构造意义[J]. 地质科学, 2017, 52(2): 545-570.

    WU Gongcheng, DING Jiaxin, WANG Zhongmei, et al. Ages and tectonic implications of the mafic-ultramafic intrusive rocks from the Quruqtagh domain, NW China[J]. Chinese Journal of Geology, 2017, 52(2): 545-570.
    [13]
    郭忻, 郝建龙, 杨素举, 等. 锆石U-Pb测年与综合地球物理方法研究塔里木盆地前寒武基底结构特征[J]. 工程地球物理学报, 2020, 17(5): 580-588. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ202005007.htm

    GUO Xin, HAO Jianlong, YANG Suju, et al. Zircon U-Pb dating and comprehensive geophysics study on the structural features of Precambrian basement in Tarim Basin[J]. Chinese Journal of Engineering Geophysics, 2020, 17(5): 580-588. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ202005007.htm
    [14]
    CAI Zhihui, JIAO Cunli, HE Bizhu, et al. Archean-Paleoproterozoic tectonothermal events in the central Tarim block: constraints from granitic gneisses revealed by deep drilling wells[J]. Precambrian Research, 2020, 347: 105776.
    [15]
    ZHAO Guochun, CAWOOD P A, WILDE S A, et al. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/4): 125-162.
    [16]
    LV Pei, YU Shengyao, PENG Yinbiao, et al. A plume broke up Columbia supercontinent: evidence from the Mesoproterozoic metamafic rocks in the Tarim Craton, NW China[J]. Precambrian Research, 2022, 377: 106719.
    [17]
    邬光辉, 李浩武, 徐彦龙, 等. 塔里木克拉通基底古隆起构造—热事件及其结构与演化[J]. 岩石学报, 2012, 28(8): 2435-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208013.htm

    WU Guanghui, LI Haowu, XU Yanlong, et al. The tectonothermal events, architecture and evolution of Tarim craton basement palaeo-uplifts[J]. Acta Petrologica Sinica, 2012, 28(8): 2435-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208013.htm
    [18]
    LU Songnian, LI Huaikun, ZHANG Chuanlin, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 160(1/2): 94-107.
    [19]
    LONG Xiaoping, SUN Min, YUAN Chao, et al. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: implications for the reconstruction of the Columbia supercontinent[J]. Precambrian Research, 2012, 222-223: 474-487.
    [20]
    LU Songnian, ZHAO Guochun, WANG Huichu, et al. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review[J]. Precambrian Research, 2008, 160(1/2): 77-93.
    [21]
    SHU L S, DENG X L, ZHU W B, et al. Precambrian tectonic evolution of the Tarim block, NW China: new geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 42(5): 774-790.
    [22]
    张永旺, 刘汇川, 于志琪, 等. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 2021, 37(4): 1122-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104010.htm

    ZHANG Yongwang, LIU Huichuan, YU Zhiqi, et al. Petrogenesis of late-Paleoproterozoic A-type granites in the Tarim Craton and implications for the Columbia assembly and break-up[J]. Acta Petrologica Sinica, 2021, 37(4): 1122-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104010.htm
    [23]
    ROGERS J J W, SANTOSH M. Configuration of columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 5-22.
    [24]
    ROGERS J J W, SANTOSH M. Tectonics and surface effects of the supercontinent Columbia[J]. Gondwana Research, 2009, 15(3/4): 373-380.
    [25]
    YE Xiantao, ZHANG Chuanlin, SANTOSH M, et al. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: new evidence from the Ca. 1.4 Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 2016, 275: 18-34.
    [26]
    WU Guanghui, XIAO Yang, BONIN B, et al. Ca. 850 Ma magmatic events in the Tarim Craton: age, geochemistry and implications for assembly of Rodinia supercontinent[J]. Precambrian Research, 2018, 305: 489-503.
    [27]
    任荣, 管树巍, 吴林, 等. 塔里木新元古代裂谷盆地南北分异及油气勘探启示[J]. 石油学报, 2017, 38(3): 255-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703002.htm

    REN Rong, GUAN Shuwei, WU Lin, et al. The north-south differentiation characteristic and its enlightenment on oil-gas exploration of the Neoproterozoic rift basin, Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(3): 255-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703002.htm
    [28]
    贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997: 29-92.

    JIA Chengzao. Tectonic features and oil and gas in the Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1997: 29-92.
    [29]
    周肖贝, 李江海, 傅臣建, 等. 塔里木盆地北缘南华纪—寒武纪构造背景及构造—沉积事件探讨[J]. 中国地质, 2012, 39(4): 900-911. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201204006.htm

    ZHOU Xiaobei, LI Jianghai, FU Chenjian, et al. A discussions on the Cryogenian-Cambrian tectonic-sedimentary event and tectonic setting of northern Tarim Basin[J]. Geology in China, 2012, 39(4): 900-911. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201204006.htm
    [30]
    TURNER S A. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China[J]. Precambrian Research, 2010, 181(1/4): 85-96.
    [31]
    陈刚, 汤良杰, 余腾孝, 等. 塔里木盆地巴楚—麦盖提地区前寒武系不整合对基底古隆起及其演化的启示[J]. 现代地质, 2015, 29(3): 576-583. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201503009.htm

    CHEN Gang, TANG Liangjie, YU Tengxiao, et al. Implications of Precambrian unconformity to basement paleo-uplift and its tectonic evolution of Bachu-Markit area, Tarim Basin[J]. Geoscience, 2015, 29(3): 576-583. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201503009.htm
    [32]
    崔海峰, 刘江丽, 田雷, 等. 塔西南坳陷震旦纪末古构造格局及其油气意义[J]. 中国石油勘探, 2018, 23(4): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804009.htm

    CUI Haifeng, LIU Jiangli, TIAN Lei, et al. Palaeotectonic pattern at the end of Sinian and its hydrocarbon significance in the southwest depression of Tarim Basin[J]. China Petroleum Exploration, 2018, 23(4): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804009.htm
    [33]
    杨鑫, 徐旭辉, 陈强路, 等. 塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J]. 天然气地球科学, 2014, 25(8): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408006.htm

    YANG Xin, XU Xuhui, CHEN Qianglu, et al. Palaeotectonics pattern in pre-Cambrian and its control on the deposition of the Lower Cambrian source rocks in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2014, 25(8): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408006.htm
    [34]
    李晓剑, 王毅, 李慧莉, 等. 新元古代陆缘岩浆弧: 塔里木盆地巴楚隆起的基底: 来自钻井岩芯的最新证据[J]. 岩石学报, 2018, 34(7): 2140-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807020.htm

    LI Xiaojian, WANG Yi, LI Huili, et al. Bachu Uplift in the central Tarim Basin based on Neoproterozoic continental arc: new lines of evidence from drilled andesite and dacite[J]. Acta Petrologica Sinica, 2018, 34(7): 2140-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807020.htm
    [35]
    李晓剑, 王毅, 李慧莉, 等. 塔里木盆地中央隆起带: 新元古代造山型基底拼合带: 来自深钻孔的碎屑记录证据[J]. 石油与天然气地质, 2018, 39(6): 1131-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806005.htm

    LI Xiaojian, WANG Yi, LI Huili, et al. Central uplift of Tarim Basin being the Neoproterozoic basement structure zone of orogeny origin: evidences from clastic samples of deep holes[J]. Oil & Gas Geology, 2018, 39(6): 1131-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806005.htm
    [36]
    石开波, 刘波, 姜伟民, 等. 塔里木盆地南华纪—震旦纪构造—沉积格局[J]. 石油与天然气地质, 2018, 39(5): 862-877. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805003.htm

    SHI Kaibo, LIU Bo, JIANG Weimin, et al. Nanhua-Sinian tectono-sedimentary framework of Tarim Basin, NW China[J]. Oil & Gas Geology, 2018, 39(5): 862-877. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805003.htm
    [37]
    WANG Zhongmei, HAN Chunming, SU Benxun, et al. The metasedimentary rocks from the eastern margin of the Tarim Craton: petrology, geochemistry, zircon U–Pb dating, Hf isotopes and tectonic implications[J]. Lithos, 2013, 179: 120-136.
    [38]
    LI Z C, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
    [39]
    GE Rongfeng, ZHU Wenbin, WU Hailin, et al. Zircon U-Pb ages and Lu-Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla Complex, NW China: implications for metamorphic zircon formation and geological evolution of the Tarim Craton[J]. Precambrian Research, 2013, 231: 1-18.
    [40]
    ZHANG Chuanlin, ZOU Haibo, LI Huaikun, et al. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research, 2013, 23(4): 1306-1315.
    [41]
    XU Zhiqin, HE Bizhu, ZHANG Chuanlin, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162.
    [42]
    高山林, 张仲培, 刘士林, 等. 塔里木克拉通北部沙雅隆起古元古代A型花岗岩的发现及其构造意义[J]. 岩石学报, 2018, 34(7): 2017-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807013.htm

    GAO Shanlin, ZHANG Zhongpei, LIU Shilin, et al. The discovery and tectonic significance of Paleoproterozoic Atype granite in Shaya Uplift of the north Tarim Craton[J]. Acta Petrologica Sinica, 2018, 34(7): 2017-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807013.htm
    [43]
    YANG Haijun, WU Guanghui, KUSKY T M, et al. Paleoproterozoic assembly of the north and south Tarim terranes: new insights from deep seismic profiles and Precambrian granite cores[J]. Precambrian Research, 2018, 305: 151-165.
    [44]
    WU Guanghui, CHEN Zhiyong, QU Tailai, et al. SHRIMP zircon age of the high aeromagnetic anomaly zone in central Tarim Basin and its geological implications[J]. Natural Science, 2012, 4(1): 1-4.
    [45]
    王永, 王斌, 陈柏林, 等. 塔里木板块归属Colombia超大陆的新证据: 来自北阿尔金地区2.0~1.8 Ga花岗质片麻岩体[J]. 中国地质, 2017, 44(2): 407-408. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702019.htm

    WANG Yong, WANG Bin, CHEN Bailin, et al. New evidence of 2.0-1.8 Ga granitic genesis Tarim plate belonging to Colombia supercontinent[J]. Geology in China, 2017, 44(2): 407-408. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702019.htm
    [46]
    ZHANG Chuanlin, YE Xiantao, ERNST R E, et al. Revisiting the Pre-cambrian evolution of the southwestern Tarim terrane: implications for its role in Precambrian supercontinents[J]. Precambrian Research, 2019, 324: 18-31.
    [47]
    YU Shengyao, LI Sanzhong, ZHANG Jianxin, et al. Grenvillian orogeny in the Oulongbuluke block, NW China: constraints from an ~1.1 Ga Andean-type arc magmatism and metamorphism[J]. Precambrian Research, 2019, 320: 424-437.
    [48]
    叶现韬. 塔里木西南前寒武纪构造演化与地壳增生[D]. 北京: 中国地质科学院, 2016.

    YE Xiantao. Precambrian tectonic evolution and crust growth of southern Tarim Terrane, Xinjiang, NW China[D]. Beijing: Chinese Academy of Geological Sciences, 2016.
    [49]
    夏林圻, 夏祖春, 李向民, 等. 华南新元古代中期裂谷火山岩系: Rodinia超大陆裂谷化—裂解的地质纪录[J]. 西北地质, 2009, 42(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200901002.htm

    XIA Linqi, XIA Zuchun LI Xiangmin, et al. Mid-Neoproterozoic rift-related volcanic rocks in South China: geological records of rifting and break-up of the supercontinent Rodinia[J]. Northwestern Geology, 2009, 42(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200901002.htm
    [50]
    李曰俊, 孙龙德, 胡世玲, 等. 塔里木盆地塔参1井底部花岗闪长岩的40Ar-39Ar年代学研究[J]. 岩石学报, 2003, 19(3): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303018.htm

    LI Yuejun, SUN Longde, HU Shiling, et al. 40Ar-39Ar geochronology of the granite and diorite revealed at the bottom of Tacan 1, the deepest well in China[J]. Acta Petrologica Sinica, 2003, 19(3): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303018.htm
    [51]
    田雷, 张虎权, 刘军, 等. 塔里木盆地西南部南华纪—震旦纪裂谷分布及原型盆地演化[J]. 石油勘探与开发, 2020, 47(6): 1122-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006008.htm

    TIAN Lei, ZHANG Huquan, LIU Jun, et al. Distribution of Nanhua-Sinian rifts and proto-type basin evolution in southwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1122-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006008.htm
    [52]
    王超. 塔里木盆地南缘前寒武纪地质演化[D]. 西安: 西北大学, 2011.

    WANG Chao. Precambrian tectonic of south marigin of Tarim Basin, NW China[D]. Xi'an: Northwest Univversity, 2011.
    [53]
    WANG Chao, LIU Liang, WANG Yonghe, et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2015, 257: 65-82.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (720) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return