Volume 45 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
WANG Longzhang, LIU Ling, XIE Xingyou, SHI Rui, FENG Kaiyou. Decoding sedimentary environment and synsedimentary tectonic activity information in nodules: a case study of the black rock series in the border area of Guizhou and Hunan[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 926-935. doi: 10.11781/sysydz202305926
Citation: WANG Longzhang, LIU Ling, XIE Xingyou, SHI Rui, FENG Kaiyou. Decoding sedimentary environment and synsedimentary tectonic activity information in nodules: a case study of the black rock series in the border area of Guizhou and Hunan[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 926-935. doi: 10.11781/sysydz202305926

Decoding sedimentary environment and synsedimentary tectonic activity information in nodules: a case study of the black rock series in the border area of Guizhou and Hunan

doi: 10.11781/sysydz202305926
  • Received Date: 2023-02-26
  • Rev Recd Date: 2023-08-11
  • Publish Date: 2023-09-28
  • The black rock series contains energy resources such as oil and gas, coal, shale gas, and various solid resources such as iron, manganese, phosphorus, and barium. The restoration of sedimentary reservoir formation and sedimentary mineralization conditions is the cornerstone of resource prediction, and the restoration of ancient sedimentary environments and synsedimentary tectonics has therefore received additional attention. There are a large number of nodules in the black rock series in the border area of Guizhou and Hunan, and the nodules have sealing properties on the original records. Therefore, based on the observation of exposed profiles in the field and laboratory microscopic analysis, and through the integrated analysis of sedimentation and tectonic processes, it is found that there are significant differences in mineral composition and textural types among nodules in different layers: (1) The nodules of Upper Sinian Series-Cambrian Terreneuvian Series Liuchapo Formation (Z€l) are an assemblage of multi-components such as barite, calcium, phosphorus, and silicon, with texture of gravel or sand fragments. The cementation temperature of the two nodule layers is different, and the one directly covering the barite ore is relatively higher; (2) The nodules of Cambrian Series 2 Palang Formation(€2p) are mainly composed of pyrite and three stages of growth structure are developed: the core layer shows a framboidal texture, and the outerside two layers show a nephritic shape; (3) The nodule components of Cambrian Series 2 Wuxun Formation (€2w) are calcium and pyrite, of which calcium is dominated, with scattered pyrite. There are four stages of growth structures, with relatively higher content of pyrite in the first and third stages. Different paleose-dimentary environmental conditions and synsedimentary tectonic activity information can be decoded from nodules at different layers: (1) The barite bearing nodules in the Liuchapo Formation belong to low-temperature hydrothermal origin, and the reduction environment is limited near the fault zone; (2) The pyrite nodules in the Palang Formation are formed near the redox interface, and the environment has medium conditions of high concentration of active iron; (3) The calcareous and pyrite nodules of the Wuxun Formation were formed in a periodic reducing environment of low concentration iron, which is speculated to be caused by frequent relative sea level fluctuation caused by episodic subsidence of the basement, leading to frequent changes in the redox properties of the water medium. Therefore, the study of nodules helps to reconstruct the medium conditions of black rock series and is of great significance for resource prediction.

     

  • All authors disclose no relevant conflict of interests.
    WANG Longzhang participated in field observation and is the main author. LIU Ling participated in field measurement, laboratory microscopy analysis, and some content writing and editing. XIE Xingyou designed observation routes and participated in field measurement work. SHI Rui and FENG Kaiyou participated in field measurement work. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    周琦, 杜远生, 袁良军, 等. 古天然气渗漏沉积型锰矿床找矿模型: 以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例[J]. 地质学报, 2017, 91(10): 2285-2298. doi: 10.3969/j.issn.0001-5717.2017.10.010

    ZHOU Qi, DU Yuansheng, YUAN Liangjun, et al. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: a case study of the Nanhua period "Datangpo" type manganese ore in the conjunction area of Guizhou, Hunan and Chongqing[J]. Acta Geologica Sinica, 2017, 91(10): 2285-2298. doi: 10.3969/j.issn.0001-5717.2017.10.010
    [2]
    ZHOU Qi, WU Chonglong, HU Xiangyun, et al. A new metallogenic model for the giant manganese deposits in northeastern Guizhou, China[J]. Ore Geology Reviews, 2022, 149: 1-11.
    [3]
    武蔚文. 贵州东部若干古油藏的形成和破坏[J]. 贵州地质, 1989, 6(1): 9-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198901002.htm

    WU Weiwen. The formation and destruction of palaeo-oil-reservoirs in the east of Guizhou province[J]. Guizhou Geology, 1989, 6(1): 9-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198901002.htm
    [4]
    范小林, 翟常博, 邓模. 中新生代构造运动在南方海相油气勘探中的意义[J]. 石油实验地质, 2006, 28(6): 539-543. doi: 10.3969/j.issn.1001-6112.2006.06.007

    FAN Xiaolin, ZHAI Changbo, DENG Mo. Significance of Meso-Cenozoic tectonic movements in marine petroleum explorations in the South of China[J]. Petroleum Geology & Experiment, 2006, 28(6): 539-543. doi: 10.3969/j.issn.1001-6112.2006.06.007
    [5]
    马龙, 徐学金, 闫剑飞, 等. 古隆起边缘页岩气富集规律与选区: 以雪峰西南缘下寒武统牛蹄塘组为例[J]. 沉积与特提斯地质, 2022, 42(3): 426-443. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202203008.htm

    MA Long, XU Xuejin, YAN Jianfei, et al. Enrichment laws and regional selection of shale gas at the edge of palaeohigh: a case study on the Lower Cambrian Niutitang Formation on the southwestern margin of Xuefeng Uplift[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(3): 426-443. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202203008.htm
    [6]
    王强, 张渠, 腾格尔, 等. 黔东南地区寒武系固体沥青的油源分析[J]. 石油实验地质, 2009, 31(6): 613-615. doi: 10.3969/j.issn.1001-6112.2009.06.013

    WANG Qiang, ZHANG Qu, TENGER, et al. Oil-source analysis of Cambrian solid bitumen in the southeastern Guizhou Province[J]. Petroleum Geology & Experiment, 2009, 31(6): 613-615. doi: 10.3969/j.issn.1001-6112.2009.06.013
    [7]
    高林, 刘光祥. 贵州凯里地区下古生界原油油源分析[J]. 石油实验地质, 2008, 30(2): 186-191. doi: 10.3969/j.issn.1001-6112.2008.02.014

    GAO Lin, LIU Guangxiang. Analysis on oil source of Lower Palaeozoic crude oil from Kaili area in Guizhou Province[J]. Petroleum Geology & Experiment, 2008, 30(2): 186-191. doi: 10.3969/j.issn.1001-6112.2008.02.014
    [8]
    王砚耕, 尹恭正, 郑淑芳, 等. 贵州上前寒武系及震旦系—寒武系界线[M]. 贵阳: 贵州人民出版社, 1984.

    WANG Yangeng, YIN Gongzheng, ZHENG Shufang, et al. The Upper Precambrian and Sinian-Cambrian boundary in Guizhou[M]. Guiyang: Guizhou People's Publishing House, 1984.
    [9]
    陈建书, 蒲元强, 石磊, 等. 贵州大河边一带重晶石矿成矿地质背景及找矿潜力[J]. 贵州地质, 2011, 28(2): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201102004.htm

    CHEN Jianshu, PU Yuanqiang, SHI Lei, et al. Mineral geologic background and prospecting potential of barite deposit in Dahebian area, Guizhou[J]. Guizhou Geology, 2011, 28(2): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201102004.htm
    [10]
    丁道桂, 郭彤楼, 刘运黎, 等. 对江南—雪峰带构造属性的讨论[J]. 地质通报, 2007, 26(7): 801-809. doi: 10.3969/j.issn.1671-2552.2007.07.003

    DING Daogui, GUO Tonglou, LIU Yunli, et al. Structural attribute of the Jiangnan-Xuefengshan belt, China: a discussion[J]. Geolo-gical Bulletin of China, 2007, 26(7): 801-809. doi: 10.3969/j.issn.1671-2552.2007.07.003
    [11]
    丁道桂, 郭彤楼, 胡明霞, 等. 论江南—雪峰基底拆离式构造: 南方构造问题之一[J]. 石油实验地质, 2007, 29(2): 120-127. doi: 10.11781/sysydz200702120

    DING Daogui, GUO Tonglou, HU Mingxia, et al. Basement decoupling structure in Jiangnan-Xuefeng: series 1 of the southern structure studies[J]. Petroleum Geology & Experiment, 2007, 29(2): 120-127. doi: 10.11781/sysydz200702120
    [12]
    吴朝东, 杨承运, 陈其英. 新晃贡溪—天柱大河边重晶石矿床热水沉积成因探讨[J]. 北京大学学报(自然科学版), 1999, 35(6): 774-785. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199906007.htm

    WU Chaodong, YANG Chengyun, CHEN Qiying. The hydrothermal sedimentary genesis of barite deposits in west Hunan and east Guizhou[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35(6): 774-785. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199906007.htm
    [13]
    江永宏. 黑色岩系中海底热液SEDEX矿床的研究概况[J]. 地质找矿论丛, 2010, 25(3): 177-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201003004.htm

    JIANG Yonghong. Introduction of the research on submarine hydrothermal SEDEX mineral deposits in the black rock series[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(3): 177-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201003004.htm
    [14]
    WANG Shujie, LI Huaiming, ZHAI Shikui, et al. Geochemical features of sulfides from the Deyin-1 hydrothermal field at the southern Mid-Atlantic Ridge near 15°S[J]. Journal of Ocean University of China, 2017, 16(6): 1043-1054.
    [15]
    杨瑞东, 鲍淼, 魏怀瑞, 等. 贵州天柱寒武系底部重晶石矿床中热水生物群的发现及意义[J]. 自然科学进展, 2007, 17(9): 1304-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200709024.htm

    YANG Ruidong, BAO Miao, WEI Huairui, et al. The discovery and significance of hydrothermal biota in the bottom of the Cambrian barite deposit in Tianzhu, Guizhou[J]. Progress in Natural Science, 2007, 17(9): 1304-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200709024.htm
    [16]
    余洪云. 贵州天柱大河边重晶石矿床地质特征及找矿方向[J]. 贵州地质, 1988, 5(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198801000.htm

    YU Hongyun. Geological characteristics of Dahebian barite deposit in Tianzhu, and direction in looking for the ore, Guizhou Province[J]. Geology of Guizhou, 1988, 5(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198801000.htm
    [17]
    蒲心纯, 周浩达, 王熙林, 等. 中国南方寒武纪岩相古地理与成矿作用[M]. 北京: 地质出版社, 1993: 2-45, 77-105.

    PU Xinchun, ZHOU Haoda, WANG Xilin, et al. Cambrian lithofacies paleogeography and mineralization in South China[M]. Beijing: Geology Press, 1993: 2-45, 77-105.
    [18]
    MORSE J W, WANG Qiwei. Pyrite formation under conditions approximating those in anoxic sediments: Ⅱ. Influence of precursor iron minerals and organic matter[J]. Marine Chemistry, 1997, 57(3/4): 187-193.
    [19]
    BUTTERFIELD D A, FOUQUET Y, HALBACH M, et al. Group report: how can we describe fluid-mineral processes and the related energy and material fluxes?[M]//HALBACH P M, TUNNICLIFFE V, HEIN J R, eds. Energy and mass transfer in marine hydrothermal systems. Berlin: Dahlem University Press, 2003: 183-209.
    [20]
    KETTANAH Y, ZENTILLI M, HANLEY J, et al. Geological setting and fluid inclusion characteristics of a lead-copper-barium occurrence hosted in a Neoproterozoic mafic sill at Kiatak, Northumberland Island, Northwestern Greenland[J]. Ore Geology Reviews, 2016, 79: 268-287.
    [21]
    WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
    [22]
    WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
    [23]
    WILKIN R T, ARTHUR M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399-1416.
    [24]
    王东升, 张金川, 李振, 等. 草莓状黄铁矿的形成机制探讨及其对古氧化—还原环境的反演[J]. 中国地质, 2022, 49(1): 36-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201003.htm

    WANG Dongsheng, ZHANG Jinchuan, LI Zhen, et al. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 2022, 49(1): 36-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201003.htm
    [25]
    GIBLIN A E, HOWARTH R W. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes[J]. Limnology and Oceano-graphy, 1984, 29: 47-63.
    [26]
    BERNER R A, BALDWIN T, HOLDREN JR G R. Authigenic iron sulfides as paleosalinity indicators[J]. Journal of Sedimentary Research, 1979, 49(4): 1345-1350.
    [27]
    RAISWELL R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1244-1263.
    [28]
    张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响: 以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 石油实验地质, 2020, 42(3): 459-466. doi: 10.11781/sysydz202003459

    ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Pyrite type and its effect on shale gas accumulation: a case study of Wufeng-Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42(3): 459-466. doi: 10.11781/sysydz202003459
    [29]
    王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996

    WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
    [30]
    卢正伟, 唐玄, 张同伟, 等. 上扬子地区下寒武统牛蹄塘组页岩中黄铁矿特征及其地质意义[J]. 石油实验地质, 2021, 43(4): 599-610. doi: 10.11781/sysydz202104599

    LU Zhengwei, TANG Xuan, ZHANG Tongwei, et al. Existence and geological significance of pyrite in the organic-rich shale of Lower Cambrian Niutitang Formation in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2021, 43(4): 599-610. doi: 10.11781/sysydz202104599
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (365) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return