Volume 45 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
LI Zhiming, JIN Yunyun, LI Chuxiong, HUANG Shuaibo, ZHOU Yuanyuan, JIA Mengyao, LENG Junying, YU Mengli, XU Ershe, LIU Yahui, LIU Peng, HE Jinyi. Discussion on shale oil enrichment pattern in the Ⅲ submember of the third member of Oligocene Hetaoyuan Formation, Biyang Sag, Nanxiang Basin: a case study of cored interval of well YYY1 in the central deep sag zone[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952
Citation: LI Zhiming, JIN Yunyun, LI Chuxiong, HUANG Shuaibo, ZHOU Yuanyuan, JIA Mengyao, LENG Junying, YU Mengli, XU Ershe, LIU Yahui, LIU Peng, HE Jinyi. Discussion on shale oil enrichment pattern in the Ⅲ submember of the third member of Oligocene Hetaoyuan Formation, Biyang Sag, Nanxiang Basin: a case study of cored interval of well YYY1 in the central deep sag zone[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952

Discussion on shale oil enrichment pattern in the Ⅲ submember of the third member of Oligocene Hetaoyuan Formation, Biyang Sag, Nanxiang Basin: a case study of cored interval of well YYY1 in the central deep sag zone

doi: 10.11781/sysydz202305952
  • Received Date: 2023-06-05
  • Rev Recd Date: 2023-08-18
  • Publish Date: 2023-09-28
  • The third member of Oligocene Hetaoyuan Formation (Eh3) in Biyang Sag of Nanxiang Basin is the first strata in which a breakthrough for continental shale oil exploration is made, but scale development has not been realized due to a variety of factors. In order to reveal the target zone of shale oil exploration and development of the third member of Hetaoyuan Formation in the central deep sag zone of Biyang Sag, a case study on the cored interval of the Ⅲ submember of the third member of Hetaoyuan Formation (Eh33) from shale oil risk exploration well YYY1 is carried out. Systematic studies on the lithofacies types and the characteristics of shale oil enrichment intervals of the cored interval of Eh33 are carried out and the shale oil enrichment pattern and preferred target layers of shale oil exploration and development are defined by taking full advantage of the results of field analysis and combining with previous research results. The findings have shown that seven lithofacies types, i.e. organic laminar mixed shale, organic-rich laminar mixed shale, organic laminar felsic shale, organic-rich laminar felsic shale, organic layered felsic shale and organic massive argillaceous siltstone/siltstone, organic massive fine sandstone, are developed in the middle-lower interval of Eh33 of well YYY1. Eight shale oil enrichment intervals are identified according to two key parameters of free hydrocarbon (S1) and oil saturation index (OSI) and combining with the total porosity of nuclear magnetic logging. The thickness of a single shale oil enrichment interval is 5-20 m and the total thickness is 81 m. The shale oil enrichment intervals developed in the middle interval of Eh33 are all controlled by both in-situ retention hydrocarbon and migration hydrocarbon from the adjacent high TOC layer, with two enrichment patterns: source-reservoir integration and source-reservoir coexistence. The shale oil enrichment intervals developed in the lower interval of Eh33 are all controlled by in-situ retention hydrocarbon, with source-reservoir integration enrichment pattern. The shale oil enrichment interval in the middle interval is defined the preferred target interval for shale oil exploration and development in Eh33 in the central deep sag zone of Biyang Sag. This provides an important basis for shale oil exploration and development in Biyang Sag.

     

  • All authors disclose no relevant conflict of interests.
    LI Zhiming and JIN Yunyun drafted and revised the manuscript.LI Chuxiong, HUANG Shuaibo, ZHOU Yuanyuan, LENG Yunying, YU Mengli, LIU Yahui and LIU Peng participated in data collation and analysis.HUANG Shuaibo,JIA Mengyao, YU Mengli, XU Ershe and LIU Yahui drew the diagrams. JIA Mengyao and HE Jinyi participated in drafting the manuscript. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    李志明, 刘鹏, 钱门辉, 等. 湖相泥页岩不同赋存状态油定量对比: 以渤海湾盆地东营凹陷页岩油探井取心段为例[J]. 中国矿业大学学报, 2018, 47(6): 1252-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806010.htm

    LI Zhiming, LIU Peng, QIAN Menhui, et al. Quantitative comparison of different occurrence oil for lacustrine shale: a case from cored interval of shale oil special drilling wells in Dongying Depression, Bohai Bay Basin[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1252-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806010.htm
    [2]
    陈祥, 王敏, 严永新, 等. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质, 2011, 32(4): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104013.htm

    CHEN Xiang, WANG Min, YAN Yongxin, et al. Accumulation conditions for continental shale oil and gas in the Biyang Depression[J]. Oil & Gas Geology, 2011, 32(4): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104013.htm
    [3]
    章新文, 余志远, 黄庆, 等. 泌阳凹陷陆相页岩油富集主控因素分析[J]. 石油地质与工程, 2013, 27(3): 5-7. doi: 10.3969/j.issn.1673-8217.2013.03.002

    ZHANG Xinwen, YU Zhiyuan, HUANG Qing, et al. Discussion on main controlling factors of continental shale oil enrichment in Biyang Depression[J]. Petroleum Geology and Engineering, 2013, 27(3): 5-7. doi: 10.3969/j.issn.1673-8217.2013.03.002
    [4]
    马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-29. doi: 10.3969/j.issn.1009-1742.2012.06.004

    MA Yongsheng, FENG Jianhui, MU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC[J]. Engineering Sciences, 2012, 14(6): 22-29. doi: 10.3969/j.issn.1009-1742.2012.06.004
    [5]
    李吉君, 史颖琳, 章新文, 等. 页岩油富集可采主控因素分析: 以泌阳凹陷为例[J]. 地球科学(中国地质大学学报), 2014, 39(7): 848-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407007.htm

    LI Jijun, SHI Yinglin, ZHANG Xinwen, et al. Control factors of enrichment and producibility of shale oil: a case study of Biyang Depression[J]. Earth Science(Journal of China University of Geosciences), 2014, 39(7): 848-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407007.htm
    [6]
    冯国奇, 李吉君, 刘洁文, 等. 泌阳凹陷页岩油富集及可动性探讨[J]. 石油与天然气地质, 2019, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htm

    FENG Guoqi, LI Jijun, LIU Jiewen, et al. Discussion on the enrichment and mobility of continental shale oil in Biyang Depression[J]. Oil & Gas Geology, 2019, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htm
    [7]
    何涛华, 李文浩, 谭昭昭, 等. 南襄盆地泌阳凹陷核桃园组页岩油富集机制[J]. 石油与天然气地质, 2019, 40(6): 1259-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906010.htm

    HE Taohua, LI Wenhao, TAN Zhaozhao, et al. Mechanism of shale oil accumulation in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin[J]. Oil & Gas Geology, 2019, 40(6): 1259-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906010.htm
    [8]
    金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 43(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
    [9]
    李志明, 孙中良, 黎茂稳, 等. 济阳坳陷第一轮页岩油探井"失利"原因剖析[J]. 地球科学, 2023, 48(1): 143-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301010.htm

    LI Zhiming, SUN Zhongliang, LI Maowen, et al. Cause analyses of "failure" for first round shale oil exploration wells in Jiyang Depression[J]. Earth Science, 2023, 48(1): 143-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301010.htm
    [10]
    云露, 何希鹏, 花彩霞, 等. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力[J]. 石油学报, 2023, 44(1): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301005.htm

    YUN Lu, HE Xipeng, HUA Caixia, et al. Accumulation characteristics and resource potential of Paleogene continental shale oil in Qintong Sag of Subei Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301005.htm
    [11]
    朱国文, 王小军, 张金友, 等. 松辽盆地陆相页岩油富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1): 110-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301010.htm

    ZHU Guowen, WANG Xiaojun, ZHANG Jinyou, et al. Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 110-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301010.htm
    [12]
    焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm

    JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm
    [13]
    蔚远江, 王红岩, 刘德勋, 等. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系[J]. 地球科学, 2023, 48(1): 191-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301013.htm

    YU Yuanjiang, WANG Hongyan, LIU Dexun, et al. Development status and feasibility evaluation index system of continental shale oil demonstration area in China[J]. Earth Science, 2023, 48(1): 191-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301013.htm
    [14]
    尚飞, 解习农, 李水福, 等. 基于地球物理和地球化学数据的页岩油甜点区综合预测: 以泌阳凹陷核三段5号页岩层为例[J]. 地球科学, 2018, 43(10): 3640-3651. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810024.htm

    SHANG Fei, XIE Xinong, LI Shuifu, et al. Comprehensive prediction of shale oil sweet spots based on geophysical and geochemical data: a case study of the Paleogene Hetaoyuan Formation, Biyang Depression, China[J]. Earth Science, 2018, 43(10): 3640-3651. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810024.htm
    [15]
    张永华, 陈祥, 张悦, 等. 泌阳凹陷地层压力成因机制与预测方法[J]. 特种油气藏, 2020, 27(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001004.htm

    ZHANG Yonghua, CHEN Xiang, ZHANG Yue, et al. Formation pressure genesis mechanism and prediction in Biyang Depression[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202001004.htm
    [16]
    谭昭昭, 王伟明, 李文浩, 等. 泌阳凹陷核桃园组三段富有机质泥页岩形成环境及发育模式[J]. 沉积学报, 2018, 36(6): 1256-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806018.htm

    TAN Zhaozhao, WANG Weiming, LI Wenhao, et al. The sedimentary environment and deposition mode of organic-rich mudstone from the third member of Hetaoyuan Formation in the Biyang Depression[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1256-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806018.htm
    [17]
    易承龙. 河南省泌阳凹陷安棚地区古近系核桃园组含碱地层层序特征及其意义[J]. 古地理学报, 2016, 18(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601008.htm

    YI Chenglong. Sequence stratigraphy characteristics and its significance of alkaliferous strata of the Paleogene Hetaoyuan Formation in Anpeng area, Biyang Sag in Henan province[J]. Journal of Palaeogeography, 2016, 18(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601008.htm
    [18]
    董田, 何生, 林社卿. 泌阳凹陷核桃园组烃源岩有机地化特征及热演化成熟史[J]. 石油实验地质, 2013, 35(2): 187-194. doi: 10.11781/sysydz201302187

    DONG Tian, HE Sheng, LIN Sheqing. Organic geochemical characteristics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan Formation of Biyang Sag, Nanxiang Basin[J]. Petroleum Geology & Experiment, 2013, 35(2): 187-194. doi: 10.11781/sysydz201302187
    [19]
    李志明, 张隽, 余晓露, 等. 南襄盆地泌阳凹陷烃源岩成熟度厘定及其意义[J]. 石油实验地质, 2013, 35(1): 76-80. doi: 10.11781/sysydz201301076

    LI Zhiming, ZHANG Jun, YU Xiaolu, et al. Determination of maturity for source rocks in Biyang Sag of Nanxiang Basin and its significance[J]. Petroleum Geology & Experiment, 2013, 35(1): 76-80. doi: 10.11781/sysydz201301076
    [20]
    王敏, 陈祥, 严永新, 等. 南襄盆地泌阳凹陷陆相页岩油地质特征与评价[J]. 古地理学报, 2013, 15(5): 663-671. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305013.htm

    WANG Min, CHEN Xiang, YAN Yongxin, et al. Geological characteristics and evaluation of continental shale oil in Biyang Sag of Nanxiang Basin[J]. Journal of Palaeogeography, 2013, 15(5): 663-671. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305013.htm
    [21]
    黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
    [22]
    朱如凯, 张婧雅, 李梦莹, 等. 陆相页岩油富集基础研究进展与关键问题[J/OL]. 地质学报, 2023: 1-23. [2023-08-15]. http://kns.cnki.net/kcms/detail/11.1951.P.20230216.1101.003.html.

    ZHU Rukai, ZHANG Jingya, LI Mengying, et al. Advances and key issues in the basic research of non-marine shale oil enrichment[J/OL]. Acta Geologica Sinica, 2023: 1-23. [2023-08-15]. http://kns.cnki.net/kcms/detail/11.1951.P.20230216.1101.003.html.
    [23]
    赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202301010.htm

    ZHAO Wenzhi, ZHU Rukai, LIU Wei, et al. Lacustrine medium-high maturity shale oil in onshore China: enrichment conditions and occurrence features[J]. Earth Science Frontiers, 2023, 30(1): 116-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202301010.htm
    [24]
    黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201020.htm

    LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201020.htm
    [25]
    胡素云, 白斌, 陶士振, 等. 中国陆相中高成熟度页岩油非均质地质条件与差异富集特征[J]. 石油勘探与开发, 2022, 49(2): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202020.htm

    HU Suyun, BAI Bin, TAO Shizhen, et al. Heterogeneous geolo-gical conditions and differential enrichment of medium and high maturity continental shale oil in China[J]. Petroleum Exploration and Development, 2022, 49(2): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202020.htm
    [26]
    潘松圻, 郭秋雷, 邹才能, 等. 页岩型与粉砂岩型"页岩油系统"甜点段判识: 以鄂尔多斯盆地长7段为例[J]. 中国科学(地球科学), 2023, 53(7): 1663-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202307016.htm

    PAN Songqi, GUO Qiulei, ZOU Caineng, et al. Identification of sweet spots in shale-type and siltstone-type "shale oil system": a case study of the Chang 7 member in Ordos Basin[J]. Science China(Earth Sciences), 2023, 66(7): 1647-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202307016.htm
    [27]
    孙龙德, 赵文智, 刘合, 等. 页岩油"甜点"概念及其应用讨论[J]. 石油学报, 2023, 44(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301001.htm

    SUN Longde, ZHAO Wenzhi, LIU He, et al. Concept and application of "sweet spot" in shale oil[J]. Acta Petrolei Sinica, 2023, 44(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301001.htm
    [28]
    LI Shuifu, HU Shouzhi, XIE Xinong, et al. Assessment of shale oil potential using a new free hydrocarbon index[J]. International Journal of Coal Geology, 2016, 156: 74-85.
    [29]
    李水福, 胡守志, 张冬梅, 等. 自由烃差值法评价页岩含油性的思想、方法及应用[J]. 地球科学, 2019, 44(3): 929-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903020.htm

    LI Shuifu, HU Shouzhi, ZHANG Dongmei, et al. Idea, method and application of evaluating shale oil potential by free hydrocarbon difference[J]. Earth Science, 2019, 44(3): 929-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903020.htm
    [30]
    李传亮, 张景廉, 杜志敏. 油气初次运移理论新探[J]. 地学前缘, 2007, 14(4): 132-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200704017.htm

    LI Chuanliang, ZHANG Jinglian, DU Zhimin. New viewpoints of the primary migration of oil and gas[J]. Earth Science Frontiers, 2007, 14(4): 132-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200704017.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (439) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return