Citation: | PENG Yongmin, DONG Shixiong, BIAN Ruikang, DU Wei, QIAO Hui, LIU Zengqin. Method for identification of fractures in shale gas horizontal wells in eastern Sichuan Basin and its application[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1196-1203. doi: 10.11781/sysydz2023061196 |
The relationship between fractures and gas logging in Nanchuan-Wulong area in eastern Sichuan Basin is utilized to study the identification of fractures in shale gas horizontal wells based on geological (core), imaging logging, logging evaluation, seismic prediction, and other data. First, to solve the problems of lack of core and imaging logging and difficulty in identifying natural fractures in shale gas horizontal wells, a core scale shale natural-fracture identification model is established through vertical wells from a geological perspective in this paper, and the development of high angle fractures in the core is consistent with the high values and peaks of total hydrocarbon anomalies. Second, in combination with the fracture identification mode, the fracture development section of non-coring vertical wells can be quickly and qualitatively identified at a low cost based on total hydrocarbon information. There will be a sudden increase in the total hydrocarbon value in the fracture development section, especially in the shale section with low total organic carbon (TOC). The sudden increase in the total hydrocarbon value also represents the existence of fractures. Finally, the plate method of TOC and normalized total hydrocarbon correlation is used to quantitatively identify vertical and horizontal well fracture sections without coring and imaging logging data. The area delineated by a normalized total hydrocarbon value ≥0.4 and TOC ≥0.5% are considered as the fracture development section of a horizontal well. Based on the identified horizontal well fracture section, from the perspective of geological engineering integration, it is possible to avoid or pay attention to these densely developed large or giant fractures in advance, thereby increasing the production of a single well.
[1] |
黄振华, 程礼军, 刘俊峰, 等. 微电阻率成像测井在识别页岩岩相与裂缝中的应用[J]. 煤田地质与勘探, 2015, 43(6): 121-123. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201506026.htm
HUANG Zhenhua, CHENG Lijun, LIU Junfeng, et al. Application of micro-resistivity image logging in identifying shale facies and fractures[J]. Coal Geology & Exploration, 2015, 43(6): 121-123. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201506026.htm
|
[2] |
刘之的, 赵靖舟. 鄂尔多斯盆地长7段油页岩裂缝测井定量识别[J]. 天然气地球科学, 2014, 25(2): 259-265. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402015.htm
LIU Zhidi, ZHAO Jingzhou. Recognizing oil shale fracture of Chang 7 member in Ordos Basin using logging data[J]. Natural Gas Geoscience, 2014, 25(2): 259-265. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402015.htm
|
[3] |
刘伟, 梁兴, 姚秋昌, 等. 四川盆地昭通区块龙马溪组页岩气"甜点"预测方法及应用[J]. 石油地球物理勘探, 2018, 53(S2): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2032.htm
LIU Wei, LIANG Xing, YAO Qiuchang, et al. Shale-gas sweet spot identification in Longmaxi, Sichuan Basin[J]. Oil Geophysical Prospecting, 2018, 53(S2): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2032.htm
|
[4] |
王海方. 苏北盆地古近系页岩油储层有效裂缝识别[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603003.htm
WANG Haifang. Recognition of effective fractures within the oil shale in the fourth member of Funing Formation in northern Jiangsu Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603003.htm
|
[5] |
徐敬领, 牛静怡, 王晓光. 泥页岩储层裂缝识别与发育程度表征方法及装置: 中国, 111175844A[P]. 2020-05-19.
XU Jingling, NIU Jingyi, WANG Xiaoguang. The shale development degree of reservoir fracture identification and characterization of method and device: CN, 111175844A[P]. 2020-05-19.
|
[6] |
黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 2006, 27(6): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606013.htm
HUANG Jixin, PENG Shimi, WANG Xiaojun, et al. Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606013.htm
|
[7] |
唐晓明, 李盛清, 许松, 等. 页岩气藏水平测井裂缝识别及声学成像研究[J]. 测井技术, 2017, 41(5): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201705001.htm
TANG Xiaoming, LI Shengqing, XU Song, et al. Acoustic characte-rization and imaging of shale gas fractures in horizontal wells: field case study in the Sichuan Basin of Southwest China[J]. Well Logging Technology, 2017, 41(5): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201705001.htm
|
[8] |
车世琦. 四川盆地涪陵地区页岩裂缝测井定量识别[J]. 特种油气藏, 2017, 24(6): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201706014.htm
CHE Shiqi. Quantitative identification of shale fractures with logging in Fuling of Sichuan Basin[J]. Special Oil and Gas Reservoirs, 2017, 24(6): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201706014.htm
|
[9] |
罗利, 王勇军, 谢刚, 等. 一种页岩气微裂缝测井识别方法: 中国, 109870720A[P]. 2019-06-11.
LUO Li, WANG Yongjun, XIE Gang, et al. A logging identification method for shale gas microfractures: CN, 109870720A[P]. 2019-06-11.
|
[10] |
姚东华, 赵贤正, 周立宏, 等. 一种细粒沉积陆相页岩裂缝识别评价方法: 中国, 110847887A[P]. 2020-02-28.
YAO Donghua, ZHAO Xianzheng, ZHOU Lihong, et al. A method for identifying and evaluating fractures in fine-grained sedimentary continental shale: CN, 110847887A[P]. 2020-02-28.
|
[11] |
赖富强, 夏炜旭, 龚大建, 等. 基于小波高频属性的泥页岩裂缝测井识别方法研究[J]. 地球物理学进展, 2020, 35(1): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001017.htm
LAI Fuqiang, XIA Weixu, GONG Dajian, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. Progress in Geophysics, 2020, 35(1): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001017.htm
|
[12] |
王飞, 程礼军, 刘俊峰, 等. 叠后地震属性识别页岩气储层裂缝研究及应用[J]. 煤田地质与勘探, 2015, 43(5): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201505026.htm
WANG Fei, CHENG Lijun, LIU Junfeng, et al. Research and application of post-stack seismic attributes in recognizing shale gas reservoir fracture[J]. Coal Geology & Exploration, 2015, 43(5): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201505026.htm
|
[13] |
董清源, 陈勇, 田建华, 等. 裂缝与断层的预测方法及系统: 中国, 110954958A[P]. 2020-04-03.
DONG Qingyuan, CHEN Yong, TIAN Jianhua, et al. Fracture and fault prediction method and system: CN, 110954958A[P]. 2020-04-03.
|
[14] |
陆亚秋, 王进, 曹梦茜. 基于改进的层次分析法的页岩气开发选区评价方法[J]. 油气藏评价与开发, 2021, 11(2): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102009.htm
LU Yaqiu, WANG Jin, CAO Mengxi. Evaluation method of shale gas development area selection based on improved analytic hie-rarchy process[J]. Reservoir Evaluation and Development, 2021, 11(2): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102009.htm
|
[15] |
BOWKER K A. Barnett shale gas production, Fort Worth Basin: issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
|
[16] |
HILL D G, NELSON C R. Gas productive fractured shales: an overview and update[J]. Gas Tips, 2000, 6(2): 4-13.
|
[17] |
CURTIS J B, FINGLETON W G.A. Well-log method for evaluating the Devonian shales in the Appalachian Basin[R]. Morgantown: Science Applications, Inc., 1979.
|
[18] |
SCHOENBERG M. Elastic wave behavior across linear slip interfaces[J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1516-1521.
|