Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
CHEN Kui, HU Desheng, SONG Ruiyou, GONG Yu, XIAO Dazhi, HUANG Anmin, ZHU Yushuang. Technical system and achievements of rolling exploration in large and medium-sized deep-water gas fields: a case study of marginal gas field A in central canyon of Qiongdongnan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 1-10. doi: 10.11781/sysydz202401001
Citation: CHEN Kui, HU Desheng, SONG Ruiyou, GONG Yu, XIAO Dazhi, HUANG Anmin, ZHU Yushuang. Technical system and achievements of rolling exploration in large and medium-sized deep-water gas fields: a case study of marginal gas field A in central canyon of Qiongdongnan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 1-10. doi: 10.11781/sysydz202401001

Technical system and achievements of rolling exploration in large and medium-sized deep-water gas fields: a case study of marginal gas field A in central canyon of Qiongdongnan Basin

doi: 10.11781/sysydz202401001
  • Received Date: 2023-08-14
  • Rev Recd Date: 2023-12-12
  • Publish Date: 2024-01-28
  • A complete technical system of gas field rolling exploration such as target search, evaluation and drilling was introduced to promote the development of the deep-water marginal gas field A in the central canyon of the Qiongdongnan Basin. In addition to the traditional target search technology of oil and gas potential in the zone, a target search technology of evaluation process was proposed for the marginal gas field A. A total of five potential oil and gas blocks were searched, and the structure A4 was selected for oil and gas target evaluation. The main controlling factors of hydrocarbon accumulation in the structure A4 were studied from two aspects: trap interpretation and implementation, and trap hydrocarbon detection. The predicted dominant gas-bearing areas in the central part of structure A4 have favorable gas-bearing information characteristics such as strong amplitude attributes, low density, low velocity, low P-wave impedance, and low P-wave and S-wave velocity ratios. They were generally classified as class Ⅲ AVO anomaly, which can upgrade the HL_0 gas group to control natural gas geological reserves. The rolling exploration well A4-1 was drilled, encountering a gas layer of over 20 m in the Huangliu Formation, and a suspicious gas layer of nearly 10 m in the second member of Yinggehai Formation. The proven geological reserves of natural gas were nearly 3 billion cubic meters, and the drilling effect was good. The application of rolling exploration research in the deep-water marginal gas field A not only effectively promotes the subsequent rolling exploration activities of the marginal gas field A, but also confirms that rolling exploration is also applicable to deep-water oil and gas exploration.

     

  • All authors disclose no relevant conflict of interests.
    The study was designed by CHEN Kui, HU Desheng and ZHU Yushuang. The experimental operation was completed by CHEN Kui, SONG Ruiyou and GONG Yu. The manuscript was drafted and revised by CHEN Kui, HU Desheng, SONG Ruiyou, GONG Yu, XIAO Dazhi, HUANG Anmin and ZHU Yushuang. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    谢玉洪. 南海北部自营深水天然气勘探重大突破及其启示[J]. 天然气工业, 2014, 34(10): 1-8.

    XIE Yuhong. A major breakthrough in deepwater natural gas exploration in a self-run oil/gas field in the northern South China Sea and its enlightenment[J]. Natural Gas Industry, 2014, 34(10): 1-8.
    [2]
    王振峰, 孙志鹏, 朱继田, 等. 南海西部深水区天然气地质与大气田重大发现[J]. 天然气工业, 2015, 35(10): 11-20. doi: 10.3787/j.issn.1000-0976.2015.10.002

    WANG Zhenfeng, SUN Zhipeng, ZHU Jitian, et al. Natural gas geological characteristics and great discovery of large gas fields in deep water area of the western South China Sea[J]. Natural Gas Industry, 2015, 35(10): 11-20. doi: 10.3787/j.issn.1000-0976.2015.10.002
    [3]
    何家雄, 李福元, 王后金, 等. 南海北部大陆边缘深水盆地成因机制与油气资源效应[J]. 海洋地质前沿, 2020, 36(3): 1-11.

    HE Jiaxiong, LI Fuyuan, WANG Houjin, et al. Genetic mechanism of deepwater basins and their effects on oil and gas resources on the continental margin of the northern South China Sea[J]. Marine Geology Frontiers, 2020, 36(3): 1-11.
    [4]
    陈奎, 宋瑞有, 韩光明, 等. 琼东南盆地深水天然气勘探开发一体化关键技术及实践[J]. 天然气工业, 2020, 40(12): 59-70. doi: 10.3787/j.issn.1000-0976.2020.12.007

    CHEN Kui, SONG Ruiyou, HAN Guangming, et al. Key technologies for the integration of deepwater natural gas exploration and development and their application in the Qiongdongnan Basin[J]. Natural Gas Industry, 2020, 40(12): 59-70. doi: 10.3787/j.issn.1000-0976.2020.12.007
    [5]
    邱银锋, 李强, 万光芬, 等. 深水油气田开发长距离大功率供电技术发展综述[J]. 中国海上油气, 2020, 32(3): 157-163.

    QIU Yinfeng, LI Qiang, WAN Guangfen, et al. Review on the state of art on subsea high power and long distance power supply technology for deep water oil and gas fields development[J]. China Offshore Oil And Gas, 2020, 32(3): 157-163.
    [6]
    王艳. 哈萨克斯坦NB油田滚动勘探开发研究[J]. 河北地质大学学报, 2019, 42(4): 31-34.

    WANG Yan. Progressing exploration and development research of NB oilfield in Kazakhstan[J]. Journal of Hebei Geo University, 2019, 42(4): 31-34.
    [7]
    闫辛酉, 石慧敏, 周凤艳, 等. 滚动勘探开发技术在港北斜坡区地层岩性油气藏的应用[J]. 录井工程, 2013, 24(4): 70-73.

    YAN Xinyou, SHI Huimin, ZHOU Fengyan, et al. Progressive exploration and development techniques of stratigraphic-lithologic hydrocarbon reservoirs in Gangbei slope[J]. Mud Logging Engineering, 2013, 24(4): 70-73.
    [8]
    朱煜华, 张晓亮, 刘盛阳, 等. 南阳凹陷魏岗地区井震一体化构造重构与滚动勘探实践[J]. 复杂油气藏, 2021, 14(1): 27-31.

    ZHU Yuhua, ZHANG Xiaoliang, LIU Shengyang, et al. Well-seismic integrated structure reconstruction and rolling exploration practice in Weigang area, Nanyang Sag[J]. Complex Hydrocarbon Reservoirs, 2021, 14(1): 27-31.
    [9]
    邱旭明, 严元锋, 唐焰, 等. 苏北盆地沙瓦油区滚动勘探方法研究[J]. 地质学刊, 2014, 38(1): 66-71.

    QIU Xuming, YAN Yuanfeng, TANG Yan, et al. Study on rolling exploration method in Shawa Oilfield[J]. Journal of Geology, 2014, 38(1): 66-71.
    [10]
    李茂, 朱绍鹏, 邹明生, 等. 涠西南凹陷复杂断块和隐蔽油气藏滚动勘探开发实践[J]. 中国海上油气, 2015, 27(4): 73-79.

    LI Mao, ZHU Shaopeng, ZOU Mingsheng, et al. Progressive exploration and development of complex fault-block and subtle reservoirs in Weixinan Sag[J]. China Offshore Oil And Gas, 2015, 27(4): 73-79.
    [11]
    薛永安, 吕丁友, 胡志伟, 等. 渤海海域隐性断层构造发育特征与成熟区勘探实践[J]. 石油勘探与开发, 2021, 48(2): 233-246.

    XUE Yongan, LÜ Dingyou, HU Zhiwei, et al. Tectonic development of subtle faults and exploration in mature areas in Bohai Sea, East China[J]. Petroleum Exploration and Development, 2021, 48(2): 233-246.
    [12]
    陈奎. 海上勘探开发一体化技术研究及应用: 以北部湾盆地涠西南凹陷为例[J]. 石油学报, 2020, 41(1): 68-79.

    CHEN Kui. Research and application of integrated technology for offshore exploration and development: a case study of Weixinan Sag in the Beibuwan Basin[J]. Acta Petrolei Sinica, 2020, 41(1): 68-79.
    [13]
    金忠康, 孙晓庆. MJZ油田构造岩性油藏滚动扩边潜力评价与认识[J]. 油气藏评价与开发, 2023, 13(2): 173-180.

    JIN Zhongkang, SUN Xiaoqing. Evaluation and recognition of rolling expansion potential of structural lithologic reservoir in MJZ Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 173-180.
    [14]
    李华, 杨朝强, 周伟, 等. 莺歌海盆地东方1-1气田中新统黄流组浅海多级海底扇形成机理及储层分布[J]. 石油与天然气地质, 2023, 44(2): 429-440.

    LI Hua, YANG Zhaoqiang, ZHOU Wei, et al. Genetic mechanism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu Formation of Dongfang 1-1 gas field, Yinggehai Basin[J]. Oil & Gas Geology, 2023, 44(2): 429-440.
    [15]
    范彩伟, 刘爱群, 吴云鹏, 等. 莺歌海盆地乐东10区新近系黄流组储层天然气充注与超压演化史[J]. 石油与天然气地质, 2022, 43(6): 1370-1381.

    FAN Caiwei, LIU Aiqun, WU Yunpeng, et al. Gas charging and overpressure evolution history of the Neogene Huangliu Formation reservoir in Ledong 10 area, Yinggehai Basin[J]. Oil & Gas Geology, 2022, 43(6): 1370-1381.
    [16]
    左倩媚, 张道军, 何卫军, 等. 琼东南盆地深水区中央峡谷黄流组物源特征[J]. 海洋学报, 2015, 37(5): 15-23.

    ZUO Qianmei, ZHANG Daojun, HE Weijun, et al. Provenance analysis of Huangliu Formation of the central canyon system in the deepwater area of the Qiongdongnan Basin[J]. Haiyang Xuebao, 2015, 37(5): 15-23.
    [17]
    梁刚, 甘军, 李兴. 琼东南盆地陵水凹陷天然气成因类型及来源[J]. 中国海上油气, 2015, 27(4): 47-53.

    LIANG Gang, GAN Jun, LI Xing. Genetic types and origin of natural gas in Lingshui Sag, Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2015, 27(4): 47-53.
    [18]
    张迎朝, 范彩伟, 徐新德, 等. 南海琼东南盆地东区天然气成因类型与烃源探讨[J]. 石油实验地质, 2015, 37(4): 466-472. doi: 10.11781/sysydz201504466

    ZHANG Yingzhao, FAN Caiwei, XU Xinde, et al. Genesis and sources of natural gas in eastern Qiongdongnan Basin, South China Sea[J]. Petroleum Geology & Experiment, 2015, 37(4): 466-472. doi: 10.11781/sysydz201504466
    [19]
    刘静静, 刘震, 王子嵩, 等. 琼东南盆地深水区中央峡谷天然气藏输导模式研究[J]. 石油实验地质, 2019, 41(2): 193-199. doi: 10.11781/sysydz201902193

    LIU Jingjing, LIU Zhen, WANG Zisong, et al. Gas migration mode for the central canyon in deep-water Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 193-199. doi: 10.11781/sysydz201902193
    [20]
    宋瑞有, 陈奎, 李安琪, 等. 天然气水合物裂隙输导系统地震表征[J]. 石油实验地质, 2021, 43(1): 136-143. doi: 10.11781/sysydz202101136

    SONG Ruiyou, CHEN Kui, LI Anqi, et al. Representation of gas hydrate fracture migration system by seismic[J]. Petroleum Geology & Experiment, 2021, 43(1): 136-143. doi: 10.11781/sysydz202101136
    [21]
    王耀华, 甘军, 梁刚, 等. 断裂—砂体—潜山复式天然气输导体系及成藏模式: 以琼东南盆地深水区为例[J]. 断块油气田, 2022, 29(3): 319-324.

    WANG Yaohua, GAN Jun, LIANG Gang, et al. Composite fault-sand body-buried hill migration systems and accumulation models of natural gas: a case study of the deep-water area in Qiongdongnan Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(3): 319-324.
    [22]
    尤丽, 权永彬, 庹雷, 等. 琼东南盆地深水区宝岛21-1气田天然气来源及输导体系[J]. 石油与天然气地质, 2023, 44(5): 1270-1278.

    YOU Li, QUAN Yongbin, TUO Lei, et al. Natural gas sources and migration pathways of the Baodao 21-1 gas field in the deep-water area of the Qiongdongnan Basin[J]. Oil & Gas Geology, 2023, 44(5): 1270-1278.
    [23]
    陈奎, 范彩伟, 韩光明, 等. 琼东南盆地深水天然气开发评价井钻探模式[J]. 断块油气田, 2022, 29(1): 124-129.

    CHEN Kui, FAN Caiwei, HAN Guangming, et al. Drilling mode of development evaluation well of deep-water natural gas in Qiongdongnan Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(1): 124-129.
    [24]
    陈奎, 王雯娟, 徐万兴, 等. 琼东南盆地中央峡谷"深海一号"大气田周缘成藏条件与滚动勘探成效[J]. 石油实验地质, 2023, 45(5): 994-1006. doi: 10.11781/sysydz202305994

    CHEN Kui, WANG Wenjuan, XU Wanxing, et al. Accumulation conditions and rolling exploration results in the periphery of "Deep Sea No. 1" Giant Gas Field in central canyon of Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 994-1006. doi: 10.11781/sysydz202305994
    [25]
    陈奎, 杨希冰, 胡林, 等. 琼东南盆地深水勘探成熟区目标搜索技术体系研究及应用成效[J]. 中国海上油气, 2020, 32(3): 33-42.

    CHEN Kui, YANG Xibing, HU Lin, et al. Study on the target search technical system in mature deep water exploration area of Qiongdongnan Basin and application effect[J]. China Offshore Oil And Gas, 2020, 32(3): 33-42.
    [26]
    邓勇, 潘光超, 李明, 等. 莺歌海盆地"平点"叠前AVO特征及识别[J]. 石油地球物理勘探, 2019, 54(5): 1123-1130.

    DENG Yong, PAN Guangchao, LI Ming, et al. Prestack AVO characteristics and identification of flat spot in Yinggehai Basin[J]. Oil Geophysical Prospecting, 2019, 54(5): 1123-1130.
    [27]
    陶维祥, 何仕斌, 赵志刚, 等. 琼东南盆地深水区储层分布规律[J]. 石油实验地质, 2006, 28(6): 554-559. doi: 10.11781/sysydz200606554

    TAO Weixiang, HE Shibin, ZHAO Zhigang, et al. Reservoir distribution in deepwater area of the Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2006, 28(6): 554-559. doi: 10.11781/sysydz200606554
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (506) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return