Volume 46 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
ZHANG Changjian, JIANG Lin, WEN Huan, LÜ Jing, CHANG Qi. Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333
Citation: ZHANG Changjian, JIANG Lin, WEN Huan, LÜ Jing, CHANG Qi. Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333

Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin

doi: 10.11781/sysydz202402333
  • Received Date: 2023-03-10
  • Rev Recd Date: 2024-01-31
  • Publish Date: 2024-03-28
  • The study of the ancient subterranean river system in the Tahe Oilfield in the Tarim Basin is still in its initial stage. Subterranean river caves are mainly classified based on the characteristics of the depth distribution and structural patterns of the subterranean rivers. However, there is a lack of comprehensive analysis regarding the spatial development patterns of complex subterranean river systems from geological perspectives such as structure, fault, paleogeomorphology, and water table. This hinders the understanding of primary and secondary relationships of subterranean rivers, spatial superposition patterns, and original connectivity relationships, thereby impeding comprehensive management research in the later stages of Tahe Oilfield development. To address this gap, an investigation was carried out in the S67 well block to clarify the developmental characteristics of the Ordovician ancient subterranean river system in the thrust anticline area of the main Tahe Oilfield. The study utilized methods like structural fault analysis, paleogeomorphology restoration, seismic attribute characterization, and vertical section interpretation to identify river types, classify systems, and examine geological origins. Noteworthy findings include the identification and analysis of a phreatic loop river for the first time. Results show that the S67 well block is located in a low-lying region at the southern edge of the karst platform within the main Tahe Oilfield area. This region features peak cluster depressions and karst hill depressions with minimal amplitude differences and shallow incision depths of surface water systems. The low-angle thrust structural style of the thrust anticline, combined with a network of faults, provides favorable dissolution channels for the multi-layered subterranean river system. In the study area, the Ordovician period is characterized by the emergence of distinct water-table subterranean river systems and phreatic loop river systems, all of which display a dendritic structure. The water-table subterranean rivers are divided into main, branch, and abandoned types, while the phreatic loop rivers are classified as ascending or symmetrical. The formation of ancient subterranean rivers in the thrust anticline area is primarily influenced by factors such as paleogeomorphology, water table levels, thrust anticline structure, and secondary fault networks.

     

  • All authors disclose no relevant conflict of interests.
    ZHANG Changjian proposed the overall concept of the paper. ZHANG Changjian and JIANG Lin were responsible for the research analysis and the compilation of the paper. The manuscript was drafted and revised by WEN Huan, LV Jing and CHANG Qi. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    张任. 岩溶洞穴分类新思考[J]. 中国岩溶, 1994(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR403.007.htm

    ZHANG Ren. New consideration on classification of karst caves[J]. Carsologica Sinica, 1994(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR403.007.htm
    [2]
    MYLROIE J E. Hydrologic classification of caves and karst[M]//LAFLEUR R G. Groundwater as a geomorphic agent. London: Routledge, 1984: 157-172.
    [3]
    FARRANT A R, SMART P L. Role of sediment in speleogenesis; sedimentation and paragenesis[J]. Geomorphology, 2011, 134(1/2): 79-93.
    [4]
    朱学稳. 桂林岩溶地貌与洞穴研究[R]. 桂林: 地科院岩溶所, 1988.

    ZHU Xuewen. Study on karst landform and caves in Guilin[R]. Guilin: Geological Publishing House, 1988.
    [5]
    于聪灵, 蔡忠贤, 杨海军, 等. 基于BP神经网络预测轮古油田奥陶系碳酸盐岩油藏洞穴充填程度[J]. 新疆石油地质, 2018, 39(5): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805019.htm

    YU Congling, CAI Zhongxian, YANG Haijun, et al. Prediction of cave filling degree in Ordovician carbonate reservoirs based on BP neural network in Lungu Oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2018, 39(5): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805019.htm
    [6]
    KAUFMANN G, ROMANOV D. Cave development in the Swabian Alb, south-west Germany: a numerical perspective[J]. Journal of Hydrology, 2008, 349(3/4): 302-317.
    [7]
    鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部"层控"与"断控"型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461

    LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of 'strata-bound' and 'fault-controlled' reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461
    [8]
    鲁新便, 何成江, 邓光校, 等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质, 2014, 36(03): 268-274. doi: 10.11781/sysydz201403268

    LU Xinbian, HE Chengjiang, DENG Guangxiao, et al. Development features of karst ancient river system in Ordovician reservoirs, Tahe Oil Field[J]. Petroleum Geology & Experiment, 2014, 36(3): 268-274. doi: 10.11781/sysydz201403268
    [9]
    张长建, 吕艳萍, 张振哲. 塔里木盆地塔河油田西部斜坡区中下奥陶统古岩溶洞穴发育特征[J]. 石油实验地质, 2022, 44(6): 1008-1017. doi: 10.11781/sysydz2022061008

    ZHANG Changjian, LÜ Yanping, ZHANG Zhenzhe. Features of Middle-Lower Ordovician paleo-karst caves in western slope area, Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1008-1017. doi: 10.11781/sysydz2022061008
    [10]
    巫波, 荣元帅, 刘遥, 等. 塔河油田暗河油气藏勘探潜力分析[J]. 断块油气田, 2015, 22(6): 702-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506005.htm

    WU Bo, RONG Yuanshuai, LIU Yao, et al. Exploration potential of oil and gas reservoirs of ancient underground river in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 702-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506005.htm
    [11]
    吕心瑞, 孙建芳, 邬兴威, 等. 缝洞型碳酸盐岩油藏储层结构表征方法: 以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质, 2021, 42(3): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103018.htm

    LÜ Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs: a case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103018.htm
    [12]
    荣元帅, 胡文革, 蒲万芬, 等. 塔河油田碳酸盐岩油藏缝洞分隔性研究[J]. 石油实验地质, 2015, 37(5): 599-605. doi: 10.11781/sysydz201505599

    RONG Yuanshuai, HU Wenge, PU Wangfen, et al. Separation of fractures and cavities in carbonate reservoirs in the Tahe Oil Field[J]. Petroleum Geology & Experiment, 2015, 37(5): 599-605. doi: 10.11781/sysydz201505599
    [13]
    耿甜, 吕艳萍, 巫波, 等. 缝洞型油藏储量评价方法及开发对策[J]. 特种油气藏, 2021, 28(6): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106017.htm

    GENG Tian, LYU Yanping, WU Bo, et al. Reservoir evaluation method and development countermeasures for fracture-vuggy reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106017.htm
    [14]
    漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm

    QI Lixin, YUN Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe Oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm
    [15]
    李源, 鲁新便, 蔡忠贤, 等. 塔河油田海西早期古水文地貌特征及其对洞穴发育的控制[J]. 石油学报, 2016, 37(8): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201608007.htm

    LI Yuan, LU Xinbian, CAI Zhongxian, et al. Hydrogeomorphologic characteristics and its controlling caves in Hercynian, Tahe Oilfield[J]. Acta Petrolei Sinica, 2016, 37(8): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201608007.htm
    [16]
    邓兴梁, 张庆玉, 梁彬, 等. 塔中Ⅱ区奥陶系鹰山组岩溶古地貌恢复方法研究[J]. 中国岩溶, 2015, 34(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502009.htm

    DENG Xingliang, ZHANG Qingyu, LIANG Bin, et al. Reconstruction of karst palaeogeomorphology for the Ordovician Ying-shan Formation in the central Tarim Basin[J]. Carsologica Sinica, 2015, 34(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502009.htm
    [17]
    吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4): 444-452. doi: 10.11781/sysydz201704444

    LÜ Haitao, ZHANG Shaonan, MA Qingyou. Classification and formation mechanism of fault systems in the central and northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4): 444-452. doi: 10.11781/sysydz201704444
    [18]
    汪洋, 张晓楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394

    WANG Yang, ZHANG Xiaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone[J]. Petroleum Geology & Experiment, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394
    [19]
    邓铭哲, 蔡芃睿, 陆建林, 等. 走滑断裂演化程度的表征参数研究[J]. 石油实验地质, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007

    DENG Mingzhe, CAI Pengrui, LU Jianglin, et al. Characterization parameters of the evolution degree of strike-slip faults[J]. Petroleum Geology & Experiment, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007
    [20]
    农社卿, 马洪敏, 朱小露, 等. 碳酸盐岩泥质充填溶洞段测井资料有效性评价方法[J]. 石油天然气学报(江汉石油学院学报), 2014, 36(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201411021.htm

    NONG Sheqing, MA Hongmin, ZHU Xiaolu, et al. Method of logging data effectiveness evaluation in carbonate argillaceous filled caves[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2014, 36(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201411021.htm
    [21]
    PALMER A N. Distinction between epigenic and hypogenic maze caves[J]. Geomorphology, 2011, 134(1/2): 9-22.
    [22]
    FORD D C. Perspectives in karst hydrogeology and cavern genesis[M]//PALMER A N, PALMER M V, SASOWSKY I D. Karst modeling. Leesburg: Karst Waters Institute Special Publication, 1999: 9-29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (232) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return