Volume 46 Issue 3
May  2024
Turn off MathJax
Article Contents
DING Yong, PAN Quanyong. Application of geothermal gradient in the study of thermal evolution of Paleozoic source rocks, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 451-459. doi: 10.11781/sysydz202403451
Citation: DING Yong, PAN Quanyong. Application of geothermal gradient in the study of thermal evolution of Paleozoic source rocks, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 451-459. doi: 10.11781/sysydz202403451

Application of geothermal gradient in the study of thermal evolution of Paleozoic source rocks, Tarim Basin

doi: 10.11781/sysydz202403451
  • Received Date: 2023-07-17
  • Rev Recd Date: 2024-04-23
  • Publish Date: 2024-05-28
  • Considerable debate has arisen regarding studies of the thermal history of Paleozoic source rocks in the Tarim Basin, particularly regarding the thermal evolution of ultra-deep, ancient source rocks. The evaluation method for the thermal evolution stages has long been a key issue in the study of source rocks' thermal history. Research findings revealed that the Cambrian paleo-geothermal gradient in the Tarim Basin varies between 2.95 and 3.6 ℃/hm. Based on the hydrocarbon generation threshold temperature of 65 ℃, the required overlying strata thickness ranges from 2 203 to 1 806 m, with a difference of 397 m, equivalent to 2.58 ℃, showing a relatively small temperature difference. Thus, it is considered that the variation in the Cambrian paleo-geothermal gradient in the Tarim Basin is minimal, allowing the differences in geothermal gradient values for each period to be ignored, and that thickness may be the main determinant of temperature. The sedimentation and residual thickness of the strata can be accurately obtained, with the error mainly depending on the restoration of the denudation thickness. The thermal evolution stages of the Cambrian Yurtus Formation source rocks in the Tarim Basin were evaluated using reliably obtained parameters such as strata thickness, paleo-geothermal gradient, denudation thickness, and hydrocarbon generation charts of source rocks. With this assessment, the effective source rocks and their distribution in the key period of the Manjiaer Depression were delineated. Moreover, the effective source rocks ofthe Yurtus Formation, their large-scale hydrocarbon generation capacity, and the favorable areas for late-stage hydrocarbon accumulation were predicted and classified. The effective source rocks at different stages and their large-scale hydrocarbon generation potential are crucial for hydrocarbon accumulation in each period. This method avoids the issue of unreliable temperature scales in maturity identification, providing an important scientific basis for deep and ultra-deep oil exploration and development in the Tarim Basin and for selecting favorable areas for late-stage hydrocarbon accumulation.

     

  • loading
  • [1]
    SUGGATE R P. 埋藏深度、镜质体反射率和地温梯度的关系[J]. 王岚, 译. 海洋石油, 1998(4): 44-58.

    SUGGATE R P. The relationship between burial depth, vitrinite reflectance, and geothermal gradient[J]. WANG Lan, trans. Offshore Oil, 1998(4): 44-58.
    [2]
    邱楠生, 梅庆华, 姜光, 等. 塔里木盆地巴楚隆起热历史: 来自He年龄和Ro的约束[C]//中国地球物理学会第二十五届年会. 合肥: 中国科学技术大学出版社, 2009.

    QIU Nansheng, MEI Qinghua, JIANG Guang, et al. Thermal history of Bachu Uplift in Tarim Basin: constraints from He age and Ro[C]//The 25th Annual Meeting of the Chinese Geophysical Society. Hefei: The University of Science and Technology of China Press, 2009.
    [3]
    王飞宇, 何萍, 程顶胜, 等. 镜状体反射率可作为下古生界高过成熟烃源岩成熟度标尺[J]. 天然气工业, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm

    WANG Feiyu, HE Ping, CHENG Dingsheng, et al. The reflectance of mirror like bodies can serve as a maturity scale for high and over mature source rocks in the Lower Paleozoic era[J]. Natural Gas Industry, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm
    [4]
    崔可. 沥青成因类型影响RoBRo关系[J]. 海相油气地质, 1999, 4(3): 36-37.

    CUI Ke. The type of asphalt formation affects the RoB-Ro relationship[J]. Marine Origin Petroleum Geology, 1999, 4(3): 36-37.
    [5]
    程顶胜, 郝石生, 王飞宇. 高过成熟烃源岩成熟度指标: 镜状体反射率[J]. 石油勘探与开发, 1995, 22(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm

    CHENG Dingsheng, HAO Shisheng, WANG Feiyu. Reflectance of vitrinite-like macerals, a possible thermal maturity index for highly/over-matured source rocks of the Lower Paleozoic[J]. Petroleum Exploration and Development, 1995, 22(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
    [6]
    程世伟. 激光拉曼光谱分析在高—过成熟烃源岩成熟度评价中的应用[J]. 内江科技, 2015, 36(2): 136. doi: 10.3969/j.issn.1006-1436.2015.02.084

    CHENG Shiwei. Application of laser Raman spectroscopy analysis in maturity evaluation of high overmature source rocks[J]. Neijiang Technology, 2015, 36(2): 136. doi: 10.3969/j.issn.1006-1436.2015.02.084
    [7]
    徐秋晨, 邱楠生, 刘雯, 等. 利用团簇同位素恢复沉积盆地热历史的探索[J]. 科学通报, 2019, 64(5): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z1007.htm

    XU Qiuchen, QIU Nansheng, LIU Wen, et al. Reconstructing the basin thermal history with clumped isotope[J]. Chinese Science Bulletin, 2019, 64(5): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z1007.htm
    [8]
    邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891

    QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891
    [9]
    陈刚, 赵重远, 李丕龙, 等. Ro反演的盆地热史恢复方法与相关问题[J]. 石油与天然气地质, 2002, 23(4): 343-347. doi: 10.3321/j.issn:0253-9985.2002.04.008

    CHEN Gang, ZHAO Zhongyuan, LI Pilong, et al. Ro inversion of thermal history reconstruction in sedimentary basin and its related problems[J]. Oil & Gas Geology, 2002, 23(4): 343-347. doi: 10.3321/j.issn:0253-9985.2002.04.008
    [10]
    任战利, 崔军平, 祁凯, 等. 叠合盆地深层、超深层热演化史恢复理论及方法研究新进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 910-929. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202206002.htm

    REN Zhanli, CUI Junping, QI Kai, et al. New progress in research on theories and methods for reconstruction of deep and ultra-deep thermal evolution history in superimposed basins[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(6): 910-929. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202206002.htm
    [11]
    高志农. 碳酸盐烃源岩演化程度评价的几个问题[J]. 河南石油, 1999, 13(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN199904000.htm

    GAO Zhinong. Several issues on evaluating the evolution degree of carbonate source rocks[J]. Petroleum Geology and Engineering, 1999, 13(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN199904000.htm
    [12]
    周中毅, 盛国英. 塔里木盆地古地温与深部找油(气)前景[J]. 地球化学, 1985(3): 236-241. doi: 10.3321/j.issn:0379-1726.1985.03.005

    ZHOU Zhongyi, SHENG Guoying. Paleogeothermal gradient in the Tarim Basin and oil(gas) prospects at great depths[J]. Geochimica, 1985(3): 236-241. doi: 10.3321/j.issn:0379-1726.1985.03.005
    [13]
    周中毅. 塔里木盆地的地温梯度偏低深部有较大油气前景[J]. 石油与天然气地质, 1985, 6(S1): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT1985S1010.htm

    ZHOU Zhongyi. The geothermal gradient in the Tarim Basin is low, and there is a great oil and gas prospect in the deep[J]. Oil & Gas Geology, 1985, 6(S1): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT1985S1010.htm
    [14]
    吴鲜, 李丹, 朱秀香, 等. 塔里木盆地顺北油气田地温场对奥陶系超深层油气的影响: 以顺北5号走滑断裂带为例[J]. 石油实验地质, 2022, 44(3): 402-412. doi: 10.11781/sysydz202203402

    WU Xian, LI Dan, ZHU Xiuxiang, et al. Influence of geothermal field on ultra-deep Ordovician oil and gas in Shunbei field, Tarim Basin: a case study of Shunbei no. 5 strike-slip fault[J]. Petroleum Geology & Experiment, 2022, 44(3): 402-412. doi: 10.11781/sysydz202203402
    [15]
    邓林, 王英民. 盆地古地温场演化动态数值模拟方法及其应用[J]. 成都理工学院学报, 1998, 25(S1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG8S1.007.htm

    DENG Lin, WANG Yingmin. A dynamic simulation approach to the evolution history of the palaeogeotemperature field of a basin[J]. Journal of Chengdu University of Technology, 1998, 25(S1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG8S1.007.htm
    [16]
    黄少英, 胡方杰, 张科, 等. 塔里木盆地中央隆起超深层现今地温场特征[J]. 地质学报, 2022, 96(11): 3955-3966. doi: 10.3969/j.issn.0001-5717.2022.11.019

    HUANG Shaoying, HU Fangjie, ZHANG Ke, et al. Present-day geotemperature field of superdeep layers in the Central Uplift, Tarim Basin[J]. Acta Geologica Sinica, 2022, 96(11): 3955-3966. doi: 10.3969/j.issn.0001-5717.2022.11.019
    [17]
    汪在君, 齐玉林, 马金龙. 塔里木盆地大庆区块壳内地温场计算及应用分析[J]. 大庆石油地质与开发, 2000, 19(1): 14-16. doi: 10.3969/j.issn.1000-3754.2000.01.005

    WANG Zaijun, QI Yulin, MA Jinlong. Calculation and application of geothermal field within the crust of Daqing block in Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2000, 19(1): 14-16. doi: 10.3969/j.issn.1000-3754.2000.01.005
    [18]
    胡晨晖. 涠西南A洼现今地温场恢复及有利勘探方向[J]. 复杂油气藏, 2023, 16(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202302006.htm

    HU Chenhui. Current geothermal field restoration and favorable exploration direction in the A Sag of the Weixinan Depression[J]. Complex Hydrocarbon Reservoirs, 2023, 16(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202302006.htm
    [19]
    涂诗棋, 左银辉, 周勇水等. 东濮凹陷现今地温场及地热资源潜力[J]. 断块油气田, 2023, 30(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301014.htm

    TU Shiqi, ZUO Yinhui, ZHOU Yongshui, et al. Present geothermal field and geothermal resource potential of the Dongpu Sag[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301014.htm
    [20]
    李慧莉, 邱楠生, 金之钧, 等. 塔里木盆地的热史[J]. 石油与天然气地质, 2005, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009

    LI Huili, QIU Nansheng, JIN Zhijun, et al. Geothermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009
    [21]
    李荣西, 廖永胜, 周义. 济阳坳陷石—二叠系热演化与生烃阶段[J]. 地球学报, 2001, 22(1): 85-90.

    LI Rongxi, LIAO Yongsheng, ZHOU Yi. Thermal history of the permo-carboniferous coal source rocks in Jiyang Depression, Shengli Oilfield[J]. Acta Geoscientia Sinica, 2001, 22(1): 85-90.
    [22]
    张惠蓉, 刘国璧. 塔里木盆地地热场特征与油气[J]. 新疆石油地质, 1992, 13(4): 294-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199204001.htm

    ZHANG Huirong, LIU Guobi. The hydrocarbon occurrence and characteristics of ceothermal field in Tarim Basin[J]. Xinjiang Petroleum Geology, 1992, 13(4): 294-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199204001.htm
    [23]
    韩杨, 蒋文龙, 杨海波, 等. 准噶尔盆地南缘中段侏罗系烃源岩热演化史及其对天然气成藏的影响[J]. 油气地质与采收率, 2022, 29(5): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202205005.htm

    HAN Yang, JIANG Wenlong, YANG Haibo, et al. Thermal evolution and natural gas accumulation of Jurassic source rocks in middle of southern margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202205005.htm
    [24]
    蒋有录, 熊继辉. 临清坳陷东部地温及有机质热演化特征[J]. 石油大学学报(自然科学版), 1997, 21(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX701.001.htm

    JIANG Youlu, XIONG Jihui. Characteristics of geotemperature and maturity of organic matter in the east part of Linqing Depression[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1997, 21(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX701.001.htm
    [25]
    刘丽. 东濮凹陷及邻区凹陷上古生界热演化史与二次生烃史研究[D]. 西安: 西北大学, 2007.

    LIU Li. Research on the thermal evolution history and secondary hydrocarbon generation history of the Upper Paleozoic in the Dongpu Depression and its adjacent depressions[D]. Xi'an: Northwestern University, 2007.
    [26]
    蒋文龙, 阿布力米提·依明, 卞保力, 等. 准噶尔盆地西北缘风城组烃源岩热演化生物标志化合物变化及意义[J]. 新疆石油地质, 2022, 43(6): 684-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206006.htm

    JIANG Wenlong, Ablimit·YIMING, BIAN Baoli, et al. Changes and significance of biomarkers in thermal evolution of Fengcheng Formation source rocks in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(6): 684-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206006.htm
    [27]
    任战利, 祁凯, 杨桂林, 等. 沉积盆地深层热演化历史与油气关系研究现状及存在问题[J]. 非常规油气, 2020, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202003001.htm

    REN Zhanli, QI Kai, YANG Guilin, et al. Research status and existing problems of relationship between deep thermal evolution history and oil and gas in sedimentary basins[J]. Unconventional Oil & Gas, 2020, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202003001.htm
    [28]
    罗昕. 塔里木盆地岩石热物性预测和现今地温场研究[D]. 北京: 中国石油大学, 2021.

    LUO Xin. Prediction of rock thermophysical properties and current geothermal field research in Tarim Basin[D]. Beijing: China University of Petroleum, 2021.
    [29]
    潘泉涌. 塔里木盆地台盆区地温梯度分布特征[J]. 内蒙古石油化工, 2018, 44(10): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201810015.htm

    PAN Quanyong. Geotemperature gradient distribution of Tarim Basin, Northwest, China[J]. Inner Mongolia Petrochemical Industry, 2018, 44(10): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201810015.htm
    [30]
    郝芳, 邹华耀, 方勇, 等. 断—压双控流体流动与油气幕式快速成藏[J]. 石油学报, 2004, 25(6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200406009.htm

    HAO Fang, ZOU Huayao, FANG Yong, et al. Overpressure-fault controlled fluid flow and episodic hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2004, 25(6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200406009.htm
    [31]
    赵靖舟. 幕式成藏理论的提出及其勘探意义[J]. 石油实验地质, 2005, 27(4): 315-320. doi: 10.11781/sysydz200504315

    ZHAO Jingzhou. Theory of episodic migration and accumulation: evidence and exploration significance[J]. Petroleum Geology & Experiment, 2005, 27(4): 315-320. doi: 10.11781/sysydz200504315
    [32]
    郝芳, 邹华耀, 杨旭升, 等. 油气幕式成藏及其驱动机制和识别标志[J]. 地质科学, 2003, 38(3): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200303017.htm

    HAO Fang, ZOU Huayao, YANG Xusheng, et al. Episodic petroleum accumulation, its driving mechanisms and distinguishing markers[J]. Chinese Journal of Geology, 2003, 38(3): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200303017.htm
    [33]
    潘长春, 周中毅, 范善发, 等. 塔里木盆地热历史[J]. 矿物岩石地球化学通报, 1996, 15(3): 150-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH603.002.htm

    PAN Changchun, ZHOU Zhongyi, FAN Shanfa, et al. Thermal history of Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1996, 15(3): 150-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH603.002.htm
    [34]
    邱楠生, 刘雯, 徐秋晨, 等. 深层—古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm

    QIU Nansheng, LIU Wen, XU Qiuchen, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm
    [35]
    刘宝静, 张健. 塔里木盆地地温演化及生油窗的影响因素分析[C]//中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会. 宁波: 中国地球物理学会, 2010.

    LIU Baojing, ZHANG Jian. Analysis of factors affecting the geothermal evolution and oil generation window in the Tarim Basin[C]// The 26th Annual Meeting of the Chinese Geophysical Society, the 13th Academic Conference of the Chinese Seismological Society. Ningbo: Chinese Geophysical Society, 2010.
    [36]
    庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用: 以古城墟隆起为例[J]. 石油学报, 2017, 38(5): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705003.htm

    ZHUANG Xinbing, GU Yi, SHAO Zhibing, et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin: a case study of Guchengxu Uplift[J]. Acta Petrolei Sinica, 2017, 38(5): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705003.htm
    [37]
    吴高奎, 张忠民, 林畅松, 等. 塔里木盆地塔北隆起区中生界沉积演化特征[J]. 石油与天然气地质, 2022, 43(4): 845-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204009.htm

    WU Gaokui, ZHANG Zhongmin, LIN Changsong, et al. Evolution of Mesozoic sedimentary fill in the Tabei Uplift region, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(4): 845-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204009.htm
    [38]
    孙龙. 塔北地区多个不整合面重叠区关键构造期剥蚀量恢复和古构造演化研究[D]. 西安: 西北大学, 2020.

    SUN Long. Study on the restoration of erosion thickness and palaeostructural evolution in the key tectonic period of multiple unconformity plane overlapping areas in the Tabei area[D]. Xi'an: Northwest University, 2020.
    [39]
    张水昌, 何坤, 王晓梅, 等. 深层多途径复合生气模式及潜在成藏贡献[J]. 天然气地球科学, 2021, 32(10): 1421-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110001.htm

    ZHANG Shuichang, HE Kun, WANG Xiaomei, et al. The multi-path gas generation model and its potential contribution to petroleum accumulation in deep formations[J]. Natural Gas Geoscience, 2021, 32(10): 1421-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110001.htm
    [40]
    赵靖舟. 幕式成藏的机理和规律探讨[J]. 天然气工业, 2006, 26(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200603004.htm

    ZHAO Jingzhou. Mechanism and regularity of episodic reservoir-ing[J]. Natural Gas Industry, 2006, 26(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200603004.htm
    [41]
    赵阳, 徐小龙, 阙仕煜, 等. Ⅰ型有机质生油增压数学模型建立与应用[J]. 油气地质与采收率, 2023, 30(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202305007.htm

    ZHAO Yang, XU Xiaolong, QUE Shiyu, et al. Establishment and application of mathematical model of oil generated overpressure by type I organic matter[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202305007.htm
    [42]
    张焕旭, 陈世加, 张亚, 等. 烃源岩生烃增压研究进展[J]. 地质科技情报, 2018, 37(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802027.htm

    ZHANG Huanxu, CHEN Shijia, ZHANG Ya, et al. Research progress of the overpressure caused by hydrocarbon generation[J]. Geological Science and Technology Information, 2018, 37(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802027.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (497) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return