Volume 46 Issue 3
May  2024
Turn off MathJax
Article Contents
GE Zhushi, ZUO Zhaoxi, XIAO Qilin, ZHENG Lunju, HUANG Haiping. Aromatic hydrocarbon evolution patterns and maturity indication significance of marine shale: a comparative study of naturally evolved and thermally simulated samples from the Second White Specks Formation of Cretaceous Colorado Group, Western Canada Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 590-600. doi: 10.11781/sysydz202403590
Citation: GE Zhushi, ZUO Zhaoxi, XIAO Qilin, ZHENG Lunju, HUANG Haiping. Aromatic hydrocarbon evolution patterns and maturity indication significance of marine shale: a comparative study of naturally evolved and thermally simulated samples from the Second White Specks Formation of Cretaceous Colorado Group, Western Canada Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 590-600. doi: 10.11781/sysydz202403590

Aromatic hydrocarbon evolution patterns and maturity indication significance of marine shale: a comparative study of naturally evolved and thermally simulated samples from the Second White Specks Formation of Cretaceous Colorado Group, Western Canada Basin

doi: 10.11781/sysydz202403590
  • Received Date: 2023-08-08
  • Rev Recd Date: 2024-04-10
  • Publish Date: 2024-05-28
  • A pyrolysis hydrocarbon generation experiment was conducted on low-maturity marine shale from the Second White Specks (2WS) Formation of the Cretaceous Colorado Group in the Western Canada Basin. Using GC-MS, quantitative analysis of aromatics in naturally evolved and thermally simulated samples was performed to systematically compare the geochemical characteristics of aromatics in both sets of samples. The results indicated that: (1) In the naturally evolved series of 2WS shale, the absolute contents of trimethylnaphthalene (TMN), tetramethylnaphthalene (TeMN), phenanthrene (P) and methylphenanthrene (MP) were relatively higher andincreased with the degree of evolution. In the thermally simulated series, the absolute contents and trends of P and MP remained consistent with those of naturally evolved series at higher thermal evolution levels, whereas the absolute contents of TMN and TeMN were relatively lower and showed different trends, increasing initially and then decreasing with maturity. (2) The trimethylnaphthalene ratio (TMNR) values of the naturally evolved series increased gradually with burial depth, while the TMNR values of the thermally simulated series decreased initially and then increased. The tetramethylnaphthalene ratio (TeMNR) and methylphenanthrene index (MPI) values of both series showed a consistent pattern: TeMNR values decreased initially and then increased with maturity, while MPI values increased with maturity, suggesting that phenanthrene series compounds effectively indicated shale maturity under both thermal simulation and natural evolution conditions. (3) The thermal simulation experiment was capable of effectively replicating the thermal evolution process of aromatics within a certain temperature range. Specifically, TMNR values of the simulated shale deviated from the naturally evolved shale before 350 ℃ but became consistent after 350 ℃. Similarly, alkyl phenanthrenes-related parameters aligned with those of the naturally evolved shale before 425 ℃ but diverged significantly beyond 425 ℃. This divergence was primarily influenced by the change in aromatic evolution mechanisms when the temperature reached a critical value, as well as by factors such as heating rate and the state of organic matter.

     

  • All authors disclose no relevant conflict of interests.
    The study was designed by ZHENG Lunju and HUANG Haiping. The experimental operation was completed by GE Zhushi and ZUO Zhaoxi. The manuscript was drafted and revised by GE Zhushi, Xiao Qilin and ZUO Zhaoxi. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. doi: 10.1016/0016-7037(95)00225-O
    [2]
    曹新星, 李艳, 王丽, 等. 松辽盆地上白垩统嫩江组三四段沉积有机质及多环芳烃化合物组成分布与古气候意义[J]. 地球化学, 2015, 44(6): 536-545. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201506002.htm

    CAO Xinxing, LI Yan, WANG Li, et al. The distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Upper Cretaceous Nenjiang Formation of Songliao Basin and its paleoclimate significance[J]. Geochimica, 2015, 44(6): 536-545. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201506002.htm
    [3]
    陈治军, 张亚雄, 王永昌, 等. 多芳烃参数定量评价烃源岩成熟度的方法: 以银额盆地中生界烃源岩为例[J]. 石油实验地质, 2022, 44(1): 139-149. doi: 10.11781/sysydz202201139

    CHEN Zhijun, ZHANG Yaxiong, WANG Yongchang, et al. Quantitative assessment of source rock maturity with multiple aromatic parameters: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 139-149. doi: 10.11781/sysydz202201139
    [4]
    REQUEJO A G, SASSEN R, MCDONALD T, et al. Polynuclear aromatic hydrocarbons (PAH) as indicators of the source and maturity of marine crude oils[J]. Organic Geochemistry, 1996, 24(10/11): 1017-1033.
    [5]
    ASAHINA K, SUZUKI N. Methylated naphthalenes as indicators for evaluating the source and source rock lithology of degraded oils[J]. Organic Geochemistry, 2018, 124: 46-62. doi: 10.1016/j.orggeochem.2018.06.012
    [6]
    PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide volume 2: biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2004.
    [7]
    郝海燕, 赵静, 刘海生, 等. 海洋沉积物中芳香烃预测中国南海潮汕坳陷油气圈闭方法[J]. 石油学报, 2018, 39(5): 528-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805004.htm

    HAO Haiyan, ZHAO Jing, LIU Haisheng, et al. Prediction of oil and gas reservoir traps by aromatic hydrocarbons from seabed sediments in Chaoshan Depression, South China Sea[J]. Acta Petrolei Sinica, 2018, 39(5): 528-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805004.htm
    [8]
    陈建平, 孙永革, 钟宁宁, 等. 地质条件下湖相烃源岩生排烃效率与模式[J]. 地质学报, 2014, 88(11): 2005-2032. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411001.htm

    CHEN Jianping, SUN Yongge, ZHONG Ningning, et al. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J]. Acta Geologica Sinica, 2014, 88(11): 2005-2032. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411001.htm
    [9]
    黄凌松, 董若婧, 刘羽汐, 等. 萘菲系列化合物成熟度参数适用性探讨: 基于热压生排烃模拟实验[J]. 矿物岩石地球化学通报, 2023, 42(1): 122-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202301011.htm

    HUANG Lingsong, DONG Ruojing, LIU Yuxi, et al. Discussion on the applicability of maturity parameters of naphthalene and phenanthrene series compounds: insights from the thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 122-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202301011.htm
    [10]
    林玉祥, 郝石生. 模拟实验中芳烃气相色谱参数的热演化特征[J]. 地球化学, 1995, 24(S1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX5S1.002.htm

    LIN Yuxiang, HAO Shisheng. Thermal evolution characteristics of phenanthrene and alkyl-phenanthrene in thermal simulation experiment[J]. Geochimica, 1995, 24(S1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX5S1.002.htm
    [11]
    杨娟, 王作栋, 薄海波, 等. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201907015.htm

    YANG Juan, WANG Zuodong, BO Haibo, et al. Evolution characteristics of trifluorene compounds in the extracts of oil shale of Xiamaling Formation by thermal simulation test[J]. Natural Gas Geoscience, 2019, 30(7): 1063-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201907015.htm
    [12]
    郭瑞超, 隋风贵, 曾治平, 等. 芳烃参数重建原油成熟度及其在哈山地区的应用[J]. 石油实验地质, 2016, 38(5): 679-684. doi: 10.11781/sysydz201605679

    GUO Ruichao, SUI Fenggui, ZENG Zhiping, et al. Aromatic parameter reconstruction of crude oil maturity and its application in Hala'alate area[J]. Petroleum Geology & Experiment, 2016, 38(5): 679-684. doi: 10.11781/sysydz201605679
    [13]
    何大祥, 唐友军, 郑彬, 等. 生排烃热模拟中页岩生物标志化合物的变化及其地质意义[J]. 断块油气田, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm

    HE Daxiang, TANG Youjun, ZHENG Bin, et al. Changes of shale biomarkers in thermal simulation of hydrocarbon generation and expulsion and its geological significance[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm
    [14]
    LECKIE D A, BHATTACHARYA J P, BLOCH J D, et al. Cretaceous Colorado/Alberta Group of the Western Canada Sedimentary Basin[M]//MOSSOP G D, SHETSEN I. Geological atlas of the Western Canada Sedimentary Basin. Calgary: Canadian Society of Petroleum Geologists and Alberta Research Council, 1994: 335-352.
    [15]
    CREANEY S, ALLAN J. Hydrocarbon generation and migration in the Western Canada Sedimentary Basin[J]. Geological Society, London, Special Publications, 1990, 50(1): 189-202. doi: 10.1144/GSL.SP.1990.050.01.9
    [16]
    林候飞, 黄海平, 蒋文龙, 等. 西加拿大盆地二白斑组地球化学特征与页岩油有利勘探区筛选[J]. 新疆石油地质, 2017, 38(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201701022.htm

    LIN Houfei, HUANG Haiping, JIANG Wenlong, et al. Geochemical characteristics and favorable areas for shale prospecting in Second White Specks Formation, Western Canada Basin[J]. Xinjiang Petroleum Geology, 2017, 38(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201701022.htm
    [17]
    SYNNOTT D P, DEWING K, SANEI H, et al. Influence of refractory organic matter on source rock hydrocarbon potential: a case study from the Second White Specks and Belle Fourche formations, Alberta, Canada[J]. Marine and Petroleum Geology, 2017, 85: 220-232. doi: 10.1016/j.marpetgeo.2017.05.011
    [18]
    郑伦举, 何生, 秦建中, 等. 近临界特性的地层水及其对烃源岩生排烃过程的影响[J]. 地球科学(中国地质大学学报), 2011, 36(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101010.htm

    ZHENG Lunju, HE Sheng, QIN Jianzhong, et al. Formation water of near-critical properties and its effects on the processes of hydrocarbon generation and expulsion[J]. Earth Science(Journal of China University of Geosciences), 2011, 36(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101010.htm
    [19]
    赵晗, 马中良, 郑伦举, 等. 有限空间温压共控热模拟油气产物地球化学特征[J]. 天然气地球科学, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htm

    ZHAO Han, MA Zhongliang, ZHENG Lunju, et al. Geochemical characteristics of hydrocarbon products under thermal simulation of temperature and pressure co-control in finite space[J]. Natural Gas Geoscience, 2020, 31(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001007.htm
    [20]
    赵红静, 张敏, 王志勇. 煤系烃源岩中正构烷烃、芳烃绝对含量及倾油倾气性判识[J]. 中国科学(D辑: 地球科学), 2008, 38(S2): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S2008.htm

    ZHAO Hongjing, ZHANG Min, WANG Zhiyong. Oil and gas potential assessment for coal measure source rocks on absolute concentration of n-alkanes and aromatic hydrocarbons[J]. Science in China (Series D: Earth Sciences), 2009, 52(1): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S2008.htm
    [21]
    魏彩云, 张斌, 胡国艺, 等. 烃源岩热模拟分子标志物演化特征及分子解析[J]. 地球化学, 2021, 50(6): 602-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202106006.htm

    WEI Caiyun, ZHANG Bin, HU Guoyi, et al. Evolution characte-ristics and molecular analysis of molecular markers in pyrolysis from source rocks[J]. Geochimica, 2021, 50(6): 602-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202106006.htm
    [22]
    FORSTER P G, ALEXANDER R, KAGI R I. Identification and analysis of tetramethylnaphthalenes in petroleum[J]. Journal of Chromatography A, 1989, 483: 384-389. doi: 10.1016/S0021-9673(01)93138-3
    [23]
    STRACHAN M G, ALEXANDER R, KAGI R I. Trimethylnaphthalenes in crude oils and sediments: effects of source and maturity[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1255-1264. doi: 10.1016/0016-7037(88)90279-7
    [24]
    KILLOPS S D. Novel aromatic hydrocarbons of probable bacterial origin in a Jurassic lacustrine sequence[J]. Organic Geochemistry, 1991, 17(1): 25-36. doi: 10.1016/0146-6380(91)90037-K
    [25]
    RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. doi: 10.1016/0016-7037(82)90285-X
    [26]
    ALEXANDER R, KAGI R I, ROWLAND S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some Ancient sediments and petroleums[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395. doi: 10.1016/0016-7037(85)90031-6
    [27]
    VAN AARSSEN B G K, HESSELS J K C, ABBINK O A, et al. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1231-1246. doi: 10.1016/0016-7037(92)90059-R
    [28]
    周佩瑜. 石油烃中烷基萘的形成机理及其地球化学意义[J]. 地质科技情报, 2008, 27(5): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805017.htm

    ZHOU Peiyu. Formation mechanism of alkylated naphthalene in petroleum hydrocarbon and its geochemistry significance[J]. Bulletin of Geological Science and Technology, 2008, 27(5): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805017.htm
    [29]
    俞頔, 崔志松, 沈冰芳, 等. 生物降解作用对烷基萘异构体分布的影响及其控制因素[J]. 地球化学, 2014, 43(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201402006.htm

    YU Di, CUI Zhisong, SHEN Bingfang, et al. The effect of bio-degradation on distribution of alkyl naphthalene isomers and controlling factors[J]. Geochimica, 2014, 43(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201402006.htm
    [30]
    卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008.

    LU Shuangfang, ZHANG Min. Oil and gas geochemistry[M]. Beijing: Petroleum Industry Press, 2008.
    [31]
    陈治军, 张佳琪, 牛凌燕, 等. 芳烃参数在湖相烃源岩成熟度评价中的适用性: 以银根—额济纳旗盆地中生界烃源岩为例[J]. 石油学报, 2020, 41(8): 928-939. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202008003.htm

    CHEN Zhijun, ZHANG Jiaqi, NIU Lingyan, et al. Applicability of aromatic parameters in maturity evaluation of lacustrine source rocks: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica, 2020, 41(8): 928-939. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202008003.htm
    [32]
    BUDZINSKI H, GARRIGUES P, CONNAN J, et al. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts[J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 2043-2056. doi: 10.1016/0016-7037(95)00125-5
    [33]
    包建平, 王铁冠, 周玉琦, 等. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学院学报, 1992, 14(4): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX199204001.htm

    BAO Jianping, WANG Tieguan, ZHOU Yuqi, et al. The relationship between methyl phenanthrene ratios and the evolution of organic matter[J]. Journal of Jianghan Petroleum Institute, 1992, 14(4): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX199204001.htm
    [34]
    肖贤明, 傅家谟, 刘德汉, 等. 沥青质反射率在油气评价中的应用初探[J]. 自然科学进展, 1992(2): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ199202007.htm

    XIAO Xianming, FU Jiamo, LIU Dehan, et al. Application of asphal-tene reflectance in oil and gas evaluation[J]. Progress in Natural Science, 1992(2): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ199202007.htm
    [35]
    阙永泉, 郑伦举, 秦建中, 等. 镜质体反射率热演化规律研究[J]. 地质科学, 2014, 49(3): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403012.htm

    QUE Yongquan, ZHENG Lunju, QIN Jianzhong, et al. Study on thermal evolution rule of vitrinite reflectance[J]. Chinese Journal of Geology, 2014, 49(3): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403012.htm
    [36]
    王兆明, 罗晓容, 陈瑞银, 等. 有机质热演化过程中地层压力的作用与影响[J]. 地球科学进展, 2006, 21(1): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200601005.htm

    WANG Zhaoming, LUO Xiaorong, CHEN Ruiyin, et al. Effects and influences of pore pressures on organic matter's maturation[J]. Advances in Earth Science, 2006, 21(1): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200601005.htm
    [37]
    邱楠生, 汪为孝, 谢明举. 沉积盆地中镜质组反射率异常的物理化学环境探讨[J]. 地质学报, 2006, 80(11): 1760-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200611015.htm

    QIU Nansheng, WANG Weixiao, XIE Mingju. Study on the phy-sical and chemical environments of abnormal vitrinite reflectance evolution in the sedimentary basins[J]. Acta Geologica Sinica, 2006, 80(11): 1760-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200611015.htm
    [38]
    朱东亚, 金之钧, 胡文瑄, 等. 异常热作用对油藏中原油的影响: 以塔里木盆地塔中18井为例[J]. 中国科学(D辑: 地球科学), 2008, 38(3): 294-306. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200803003.htm

    ZHU Dongya, JIN Zhijun, HU Wenxuan, et al. The impact of abnormal thermal action on crude oil in the reservoir: taking well Tazhong 18 in the Tarim Basin as an example[J]. Science in China (Series D: Earth Sciences), 2008(3): 294-306. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200803003.htm
    [39]
    郑伦举, 秦建中, 张渠, 等. 中国海相不同类型原油与沥青生气潜力研究[J]. 地质学报, 2008, 82(3): 360-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803010.htm

    ZHENG Lunju, QIN Jianzhong, ZHANG Qu, et al. Gas-generation potentiality of various marine crude oil and bitumen in China[J]. Acta Geologica Sinica, 2008, 82(3): 360-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803010.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (798) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return