Volume 46 Issue 3
May  2024
Turn off MathJax
Article Contents
LIN Xiaohui, LIANG Tian, ZOU Yanrong, TAO Cheng, WANG Yuan. Solid-liquid organic matter interaction mechanism between kerogen and aromatic compounds[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 614-620. doi: 10.11781/sysydz202403614
Citation: LIN Xiaohui, LIANG Tian, ZOU Yanrong, TAO Cheng, WANG Yuan. Solid-liquid organic matter interaction mechanism between kerogen and aromatic compounds[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 614-620. doi: 10.11781/sysydz202403614

Solid-liquid organic matter interaction mechanism between kerogen and aromatic compounds

doi: 10.11781/sysydz202403614
  • Received Date: 2023-05-31
  • Rev Recd Date: 2024-03-21
  • Publish Date: 2024-05-28
  • Under geological conditions, the initial generation of oil and gas in source rocks reaches saturation before being expelled and migrating, with the adsorption of hydrocarbons by kerogen being a key factor influencing oil saturation. The hydrocarbons produced by pyrolysis interact with kerogen macromolecules. Understanding the solvency and adsorption capacities of solid kerogen organic matter for liquid hydrocarbons can clarify the selective retention of hydrocarbons by source rocks and their characteristics in hydrocarbon generation and expulsion. Aromatic hydrocarbons are crucial components of petroleum hydrocarbons. Based on a three-dimensional model of kerogen, this study employed Autodock software to perform semi-flexible docking calculations between different types of aromatic hydrocarbon molecules (including benzene, polycyclic aromatic hydrocarbons, and their derivatives) and kerogen molecules of varying maturities. The Gibbs free energy required for their binding was calculated to study the characte-risticsof the interaction between aromatic hydrocarbons and kerogen. This study investigated the mechanism of kerogen adsorption of aromatic hydrocarbons at the molecular level, revealing the nature of solid and liquid organic matter interactions. When binding with kerogen of the same maturity, the larger the molecular weight of the polycyclic aromatic hydrocarbons, the greater the number of methyl groups in the compound, and the higher the degree of molecular condensation, the lower the Gibbs free energy required for binding with kerogen molecules. The interaction between aromatic hydrocarbons and kerogen molecules was influenced by three factors: the molecular mass of the aromatic hydrocarbons, the degree of molecular condensation, and the number of methyl groups in the system. After reaching the peak of hydrocarbon generation, kerogen with higher content of aromatic carbon methyl groups showed a stronger adsorption capacity for aromatic hydrocarbons. Polycyclic aromatic hydrocarbons and their derivatives with larger molecular mass and higher degrees of condensation demonstrated stronger binding abilities with kerogen. Conversely, smaller aromatic molecules with conventional connectivity exhibited weaker retention capacities in kerogen, making them more prone to hydrocarbon expulsion, migration, and accumulation into reservoirs.

     

  • All authors disclose no relevant conflict of interests.
    The experiment was designed by LIN Xiaohui and LIANG Tian. The experimental operation was completed by LIN Xiaohui and WANG Yuan. The manuscript was drafted and revised by LIN Xiaohui, ZOU Yanrong and TAO Cheng. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    LIANG Tian, ZOU Yanrong, ZHAN Zhaowen, et al. An evaluation of kerogen molecular structures during artificial maturation[J]. Fuel, 2020, 265: 116979. doi: 10.1016/j.fuel.2019.116979
    [2]
    王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306009.htm

    WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306009.htm
    [3]
    李嘉蕊, 杨智, 王兆云, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存定量表征及其主控因素[J]. 石油实验地质, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681?viewType=HTML

    LI Jiarui, YANG Zhi, WANG Zhaoyun, et al. Quantitative characte-rization and main controlling factors of shale oil occurrence in Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681?viewType=HTML
    [4]
    侯大力, 韩鑫, 唐洪明, 等. 龙马溪组页岩干酪根表征初探及干酪根吸附特征研究[J]. 油气藏评价与开发, 2023, 13(5): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305011.htm

    HOU Dali, HAN Xin, TANG Hongming, et al. Primary research on expression of kerogen in Longmaxi Shale and its adsorption characteristics[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305011.htm
    [5]
    李晶辉, 韩鑫, 黄思婧, 等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发, 2022, 12(3): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203007.htm

    LI Jinghui, HAN Xin, HUANG Sijing, et al. Molecular simulation of adsorption law for shale kerogen[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203007.htm
    [6]
    钱门辉, 王绪龙, 黎茂稳, 等. 玛页1井风城组页岩含油性与烃类赋存状态[J]. 新疆石油地质, 2022, 43(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206007.htm

    QIAN Menhui, WANG Xulong, LI Maowen, et al. Oil-bearing properties and hydrocarbon occurrence states of Fengcheng formation shale in Well Maye-1, Mahu sag[J]. Xinjiang Petroleum Geology, 2022, 43(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206007.htm
    [7]
    刘金, 王剑, 张宝真, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组微—纳米孔隙页岩油原位赋存特征[J]. 石油实验地质, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270?viewType=HTML

    LIU Jin, WANG Jian, ZHANG Baozhen, et al. In situ occurrence of shale oil in micro-nano pores in Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270?viewType=HTML
    [8]
    杨琴, 黄亮, 周文, 等. 深层页岩伊利石孔隙中甲烷吸附相密度特征[J]. 断块油气田, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm

    YANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil and Gas Field, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm
    [9]
    李洪波, 吴智超, 张敏, 等. 吉木萨尔凹陷芦草沟组页岩油地球化学特征与运聚意义[J]. 断块油气田, 2023, 30(4): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202304008.htm

    LI Hongbo, WU Zhichao, ZHANG Min, et al. The geochemical characteristics and migration-accumulation significances of shale oil in Lucaogou Formation of Jimsar Sag[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202304008.htm
    [10]
    KELEMEN S R, WALTERS C C, ERTAS D, et al. Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory[J]. Energy & Fuels, 2006, 20(1): 301-308.
    [11]
    ERTAS D, KELEMEN S R, HALSEY T C. Petroleum expulsion part 1. Theory of kerogen swelling in multicomponent solvents[J]. Energy & Fuels, 2006, 20(1): 295-300.
    [12]
    HUANG Zhenkai, LIANG Tian, ZHAN Zhaowen, et al. Chemical structure evolution of kerogen during oil generation[J]. Marine and Petroleum Geology, 2018, 98: 422-436. doi: 10.1016/j.marpetgeo.2018.08.039
    [13]
    BEHAR F, VANDENBROUCKE M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24. doi: 10.1016/0146-6380(87)90047-7
    [14]
    DUAN Dandan, ZHANG Dainan, MA Xiaoxuan, et al. Chemical and structural characterization of thermally simulated kerogen and its relationship with microporosity[J]. Marine and Petroleum Geo-logy, 2018, 89: 4-13. doi: 10.1016/j.marpetgeo.2016.12.016
    [15]
    郭少斌, 翟刚毅, 包书景, 等. 干酪根及黏土单矿物对甲烷吸附能力的差异性[J]. 石油实验地质, 2017, 39(5): 682-685. doi: 10.11781/sysydz201705682

    GUO Shaobin, ZHAI Gangyi, BAO Shujing, et al. Difference of methane adsorption capacity of kerogen and clay minerals[J]. Petroleum Geology & Experiment, 2017, 39(5): 682-685. doi: 10.11781/sysydz201705682
    [16]
    RITTER U. Solubility of petroleum compounds in kerogen: implications for petroleum expulsion[J]. Organic Geochemistry, 2003, 34(3): 319-326. doi: 10.1016/S0146-6380(02)00245-0
    [17]
    BRAUN R L, BURNHAM A K. PMOD: a flexible model of oil and gas generation, cracking, and expulsion[J]. Organic Geochemistry, 1992, 19(1/3): 161-172.
    [18]
    CRADDOCK P R, VAN LE DOAN T, BAKE K, et al. Evolution of kerogen and bitumen during thermal maturation via semi-open pyrolysis investigated by infrared spectroscopy[J]. Energy & Fuels, 2015, 29(4): 2197-2210.
    [19]
    孙佳楠, 梁天, 林晓慧, 等. 东营凹陷沙四上段烃源岩原油的生成与滞留动力学[J]. 地球化学, 2019, 48(4): 370-377. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201904005.htm

    SUN Jianan, LIANG Tian, LIN Xiaohui, et al. Oil generation and retention kinetics from the upper Es4 source rock in the Dong-ying Depression[J]. Geochimica, 2019, 48(4): 370-377. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201904005.htm
    [20]
    蔡玉兰, 张馨, 邹艳荣. 溶胀: 研究石油初次运移的新途径[J]. 地球化学, 2007, 36(4): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200704003.htm

    CAI Yulan, ZHANG Xin, ZOU Yanrong. Solvent swelling: a new technique for oil primary migration[J]. Geochimica, 2007, 36(4): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200704003.htm
    [21]
    LIANG Tian, ZHAN Zhaowen, ZOU Yanrong, et al. Research on type Ⅰ kerogen molecular simulation and docking between kerogen and saturated hydrocarbon molecule during oil generation[J]. Chemical Geology, 2023, 617: 121263. doi: 10.1016/j.chemgeo.2022.121263
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (121) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return